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Abstract

We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their
six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by
reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing
questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other
contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid
analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry.
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Introduction

In this paper, we study rigid analytic motives over general rigid analytic spaces and we develop a six-
functor formalism for them. We have tried to free our treatment from unnecessary hypotheses, and many
of our main results hold in great generality, with the notable exception of Theorems 3.3.3(2) and 3.8.1
where we impose étale descent. (This is necessary for the former but might be superfluous for the latter.)
In this introduction, we restrict to étale rigid analytic motives with rational coefficients, for which our
results are the most complete.!

The six-functor formalism

Rigid analytic motives were introduced in [Ayol5] as a natural extension of the notion of a motive
associated to a scheme. Given a rigid analytic space S, we denote by RigDA (S; Q) the co-category of
étale rigid analytic motives over S with rational coefficients. By construction, it is naturally equipped
with the structure of a symmetric monoidal co-category (see Definition 2.1.15).

Given a morphism of rigid analytic spaces f : T — S, the functoriality of the construction yields an
adjunction

/7 : RigDA4(S:Q) 2 RigDA(T;Q) : f.. (1
When f is locally of finite type, we construct in this paper another adjunction (see Definition 4.3.4)
fi  RigDA4(T;: Q) 2 RigDA4(S:Q) : ', 2

i.e., we define the ‘exceptional direct image’ and the ‘exceptional inverse image’ functors associated to
f. Our main goal in this paper is to show the following result.

Scholium. The functors f*, f., fi, ', ® and Hom satisfy the usual properties of a six-functor formalism.
These include:

o the compatibility with composition of morphisms (see Proposition 2.1.21 and Corollary 4.3.18);

o the localization formula (see Proposition 2.2.3(2));

o the base change theorems (see Proposition 2.2.1(3) for the smooth base change, Theorem 2.7.1 for
the quasi-compact base change, Theorem 4.1.4 for the extended proper base change and Proposition
4.4.26 for the exchange between the ‘ordinary inverse image’ and the ‘exceptional direct image’
functors);

In fact, everything we say here holds more generally with coefficients in an arbitrary ring when the class of rigid analytic
spaces is accordingly restricted. For instance, if one is only considering rigid analytic spaces over Q, of finite étale cohomological

dimension, the results discussed in the introduction are valid with Z[ p~! |-coefficients.
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o the canonical equivalences fi =~ f., when f is proper (see Example 4.3.6), and the equivalence
'~ £ (d)[2d], when f smooth of pure relative dimension d (see Theorem 4.4.29);

o the compatibility with tensor product, the projection formula and duality (see Proposition 2.1.21 and
Corollaries 4.1.8, 4.5.3 and 4.5.4).

Of course, our six-functor formalism matches the one developed by Huber [Hub96] for the étale
cohomology of adic spaces. (Similar formalisms for étale cohomology were also developed by Berkovich
[Ber93] and de Jong—van der Put [dJvdP96].)

A partial six-functor formalism for rigid analytic motives was obtained in [Ayo15, §1.4] at a minimal
cost as an application of the theory developed in [Ayo(O7a, Chapitre 1]. Given a non-Archimedean field
K and a classical affinoid K-algebra A, the assignment sending a finite type A-scheme X to the oco-
category RigDA (X*"; Q) gives rise to a stable homotopical functor in the sense of [Ayo07a, Définition
1.4.1]. (Here X®" is the analytification of X.) Applying [Ayo07a, Scholie 1.4.2], we have in particular an
adjunction as in equation (2) under the assumption that f is algebraizable, i.e., that f is the analytification
of a morphism between finite type A-schemes, for some unspecified classical affinoid K-algebra A.
Clearly, it is unnatural and unsatisfactory to restrict to algebraizable morphisms, and it is our objective
in this paper to remove this restriction. The key ingredient for doing so is Theorem 4.1.4 which we
may consider as an extended proper base change theorem for commuting direct images along proper
morphisms and extension by zero along open immersions. It is worth noting that in the algebraic setting,
the extended proper base change theorem is essentially a reformulation of the usual one, but this is far
from true in the rigid analytic setting. In fact, the usual proper base change theorem in rigid analytic
geometry is a particular case of the so-called quasi-compact base change theorem (see Theorem 2.7.1)
which is an easier property.

The extended proper base change theorem is already known if one restricts to projective morphisms
in which case it can be deduced from the partial six-functor formalism developed in [Ayol5, §1.4].
However, in the rigid analytic setting, it is not possible to deduce the general case of proper morphisms
from the special case of projective morphisms. Indeed, the classical argument used in [SGAIV3, Exposé
XII] for reducing the proper case to the projective case relies on Chow’s lemma for which there is no
analogue in rigid analytic geometry. (For instance, there are proper rigid analytic tori which are not
algebraizable [FvdP04, §6.6].) Therefore, a new approach was necessary for proving Theorem 4.1.4 in
general.

Rigid motives as modules in algebraic motives

Our approach is based on another contact point with algebraic geometry: Instead of using the analytifi-
cation functor from schemes to rigid analytic spaces, we go backward and associate to a rigid analytic
space X the pro-scheme consisting of the special fibers of the different formal models of X. We now
sketch the main idea of our construction, which is detailed in Section 3.4.

Let S be a formal scheme. We may associate to it the co-category of formal motives FDA (S; Q)
which is canonically equivalent to the co-category of (algebraic) motives DA« (S ; Q) over the special
fiber S (see Theorem 3.1.10). The ‘generic fiber’ functor induces a functor

&s : DA«(853Q) ~ FDA«(8; Q) — RigDA (8™ Q),

where 8"¢ is the rigid analytic space associated to S. It is immediate to see that £g is monoidal and has
a right adjoint ys sending the unit object of RigDA,(8"¢; Q) to a commutative algebra object ysQ of
DA (S+; Q). Moreover, the functor yg admits a factorization

. ri Ys ff
RigDA (8" Q) 25 DA«(So; xsQ) — DA«(S,3Q),
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where DA4(S+; xsQ) denotes the oo-category of ysQ-modules in DA« (S,; Q) and where ff is the
forgetful functor. Also, the functor ys admits a left adjoint

£s : DA«(So; xsQ) — RigDA,(8;Q)
M — £5(M) ®ggysa Q.

Now, if S is a quasi-compact and quasi-separated rigid analytic space, we may consider the cofiltered
category MdI(S) of formal models of S (see Notation 1.1.9). The above construction yields a functor

Es seolim DAa(Sq:xsQ) — RigDA«(S: Q).

One of our main results is the following (see Theorem 3.3.3 and Remark 3.3.5).

Theorem. Restrict to rigid analytic spaces which are quasi-compact, quasi-separated and having
finite Krull dimension. The natural transformation E exhibits the functor S — RigDA (S;Q) as the
étale sheafification of the functor S — colimgemai(s) DA« (S xsQ) viewed as a presheaf valued in
presentable co-categories.

We use the above description of the co-categories RigDA,(S; Q) to deduce the extended proper base
change theorem in rigid analytic geometry (i.e., Theorem 4.1.4) from its algebraic analogue. In fact, it
turns out that we only need a formal consequence of this description which happens to be also a key
ingredient in its proof, namely Theorem 3.6.1 (see also Theorem 4.1.3). Once Theorem 4.1.4 is proven,
it is easy to construct the adjunction (2).

We also point out that the commutative algebras ysQ admit a concrete description. For precise
statements, see Theorem 3.8.1 and Remark 3.8.2. Moreover, the special case of the above theorem
where we take for S = Spf(k[[x]])"¢, with k a field of characteristic zero, is tightly connected to the
main result of [Ayo15, Chapitre 1]. This will be explained in Remark 3.8.3.

Further results and applications

Besides the six-functor formalism, the paper contains several foundational results on motives of rigid
analytic spaces which are of independent interest. In particular, we study the descent property of the
oco-categories RigDA, (S; Q) for the étate topology; see Theorem 2.3.4.

Another notable result is Theorem 2.5.1 which, roughly speaking, asserts that RigDA, (—; Q) trans-
forms limits of certain rigid analytic pro-spaces into colimits of presentable co-categories. A similar
property is also true for DA (—; Q), but the proof in the rigid analytic setting is much more involved
and relies on approximation techniques as those used in the proof of [Vez19, Proposition 4.5]. We also
like to mention that this continuity property for RigDA (—; Q) plays a crucial role (along with many
of the results described above) in the recent paper [LBV21] where a new relative cohomology theory
for rigid analytic varieties over a positive characteristic perfectoid space P is defined and studied. Inter-
estingly, this relative cohomology theory takes values in solid quasi-coherent sheaves over the relative
Fargues—Fontaine curve associated to P.

Notation and conventions

co-Categories

We use the language of co-categories following Lurie’s books [Lur09] and [Lur17]. The reader familiar
with the content of these books will have no problem understanding our notation pertaining to higher
category theory and higher algebra which are often very close to those in loc. cit. Nevertheless, we list
below some of these notational conventions which we use frequently.
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As usual, we employ the device of Grothendieck universes, and we denote by Cat,, the co-category
of small co-categories and CAT., the co-category of locally small, but possibly large, co-categories.
We denote by CATL, (resp., CATR) the wide sub-co-category of CAT,, spanned by functors which
are left (resp., right) adjoints. Similarly, we denote by Pr™ (resp., Pr®) the oco-category of presentable
co-categories and left adjoint (resp., right adjoint) functors. We denote by Pr ¢ Prl (resp., Pr¥ ¢
PrR) the sub-co-category of compactly generated co-categories and compact-preserving functors (resp.,
functors commuting with filtered colimits).

1-Categories are typically referred to as just ‘categories’ and viewed as co-categories via the nerve con-
struction. For emphasis, we sometimes call them ‘ordinary categories’. We denote by S the co-category
of small spaces, by Sp the co-category of small spectra and by Sp>g C Sp its full sub-co-category of
connective spectra.

Given an co-category €, we denote by Mape (x, y) the mapping space between two objects x and y
in C. Given another co-category D, we denote by Fun(C, D) the co-category of functors from € to D. If
C is small, we denote by P(C) = Fun(C°P, 8) the co-category of presheaves on € and by y : € — P(C)
the Yoneda embedding.

Monoidal structures
By ‘monoidal co-category’ we always mean ‘symmetric monoidal co-category’, i.e., a co-Cartesian
fibration C® — Fin, such that the induced functor (p?); : €,y = [1;<i<n C(1y is an equivalence for all
n > 0. (Recall that Fin, is the category of finite pointed sets, (n) = {1, ...,n} U {x} and p' : (n) — (1)
is the unique map such that (p?)~!(1) = {i}.) If €% is a monoidal co-category, we denote by CAlg(C)
the co-category of commutative algebras in C. If A € CAlg(€), we denote by Mod 4 (C) the co-category
of A-modules. Using Lurie’s straightening construction, a monoidal category can be considered as an
object of CAlg(CAT), i.e., as a commutative algebra in CATY.

The co-categories Pr“ and Prl: underly monoidal co-categories Pr>® and PrI;; ®_ A monoidal co-
category is said to be presentable (resp., compactly generated) if it belongs to CAlg(Pr’) (resp.,
CAlg(PrL)).

Sites and topoi

If € is an co-category endowed with a topology 7, we denote by (C, ) the corresponding site. We
denote by Shv,(€) c P(C) the full sub-co-category of 7-sheaves and by Shv;(€) c Shv,(€) its full
sub-oo-category of 7-hypersheaves. We use L. to denote the 7-sheafification functor as well as the
7-hypersheafification functor. (The context will make it clear which of the two we mean.) Morphisms
of sites (C,7) — (€', 7’) are underlain by functors in the opposite direction ¢’ — €. In particular, a
cofiltered inverse system of sites (Cq, 7o )q is underlain by a filtered direct system of co-categories, and
we write lim, (Cq, 7o) for the site (colim,Cy,, ), where 7 is the topology generated by the 7,’s in the
obvious way.

In the cases of most interest to us, the sites are underlain by ordinary categories. In these cases, we
follow the classical terminology and say that a morphism of sites is an equivalence of sites if it induces
an equivalence on the associated ordinary topoi. (This will be repeated each time to avoid any possible
confusion.)

Formal and rigid analytic geometries
We use Raynaud’s approach to rigid analytic geometry [Ray74] which is systematically developed in
the books of Abbes [Abb10] and Fujiwara—Kato [FK18]. In fact, we mainly use [FK 18], where rigid
analytic spaces are introduced without noetherianness assumptions.

We denote formal schemes by calligraphic letters X, Y, etc. and rigid analytic spaces by roman letters
X, Y, etc. Formal schemes are always assumed adic of finite ideal type in the sense of [FK18, Chapter
I, Definitions 1.1.14 & 1.1.16]. Morphisms of formal schemes are always assumed adic in the sense of
[FK18, Chapter I, Definition 1.3.1]. Given a formal scheme X, we denote by X"ig jts associated rigid
analytic space which we call the Raynaud generic fiber (or simply the generic fiber) of X. Recall that X"
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is simply X considered in the localisation of the category of formal schemes with respect to admissible
blowups. A general rigid analytic space is locally isomorphic to the generic fiber of a formal scheme.
As we show in Corollary 1.2.7, the category of stably uniform adic spaces (see [BV18]) embeds fully
faithfully in the category of rigid analytic spaces.

Given a rigid analytic space X, we denote by |X| the associated topological space (see Notation
1.1.11). This is constructed in [FK18, Chapter II, §3.1], where it is called the Zariski-Riemann space
of X. The space | X| is endowed with a sheaf of rings Oy, called the structure sheaf, and a subsheaf of
rings (93'( c Oy, called the integral structure sheaf. (In [FK 18, Chapter II, §3.2], the integral structure
sheaf is denoted by Oi;(“, but we prefer to follow Huber’s notation in [Hub96].)

Motives (algebraic, formal and rigid analytic)
We fix a commutative ring spectrum A, i.e., an object of CAlg(Sp) which we assume to be connective
for simplicity.

Given a scheme S, we denote by SH.(S; A) the Morel-Voevodsky oco-category of 7-motives on S
with coefficients in A (see, for example, [Jar00]). Here 7 € {nis, ét} is either the Nisnevich or the étale
topology. When 7 is the Nisnevich topology, we sometimes omit the subscript ‘nis’ and speak simply
of motives over S. If A is the Eilenberg—Mac Lane spectrum associated to a commutative dg-ring (also
denoted by A), we usually write DA (S; A) instead of SH.(S; A).

Given a formal scheme S, we denote by FSH(S; A) the oco-category of formal 7-motives on §
with coefficients in A (see Definition 3.1.1). Similarly, given a rigid analytic space S, we denote by
RigSH . (S; A) the oo-category of rigid analytic T-motives on S with coefficients in A (see Definition
2.1.11). Here again, T € {nis, ét} is either the Nisnevich or the étale topology, and when 7 is the Nisnevich
topology we sometimes omit the subscript ‘nis’. If A is the Eilenberg—Mac Lane spectrum associated to
a commutative dg-ring (also denoted by A), we usually write FDA ;- (8; A) and RigDA . (S; A) instead
of FSH,(8; A) and RigSH_(S; A).

We also consider the unstable (also known as, effective) and/or hypercomplete variants of these
motivic co-categories, which we refer to using superscripts ‘eff” and/or ‘A’. For example, SH. (S; A)
is the Morel-Voevodsky oco-category of hypercomplete T-motives and SH";E’A(S; A) is its effective
version. If a statement is equally valid for the T-stable and the effective motivic co-categories, we use the
superscript ‘(eff)’. For example, the sentence ‘the co-category RigDA(Teﬁ) (S; A) is presentable’ means
that both oco-categories RigDA‘;ﬁ(S ;A) and RigDA _(S; A) are presentable. We use the superscripts
‘(A)” and ‘(eff, A)’ in a similar way. For example, the sentence ‘S +> SH&CH’ A (S;A) is a Prt-
valued 7-(hyper)sheaf” means that we have two 7-sheaves, namely SHeTff(—; A) and SH,(—; A), and two
7-hypersheaves, namely SHE™ " (—; A) and SH. (—; A).

1. Formal and rigid analytic geometry

In this section, we gather a few results in rigid analytic geometry which we need later in the paper.
We use Raynaud’s approach [Ray74] which can be summarised roughly as follows: The category of
rigid analytic spaces is the localisation of the category of formal schemes with respect to admissible
blowups. This is correct up to imposing the right conditions on formal schemes and slightly enlarging the
localised category to allow gluing along open immersions. Raynaud’s approach has been systematically
developed by Abbes [Abb10] and Fujiwara—Kato [FK 18]. We will mainly follow the book [FK 18] where
rigid analytic spaces are introduced without noetherianness assumptions. Indeed, one of the aims of
the paper is to show that there are reasonable co-categories of rigid analytic motives over general rigid
analytic spaces. We warn the readers that many results in [FK 18] require noetherianness assumptions,
especially when it comes to the study of quasi-coherent sheaves. However, the theory of quasi-coherent
sheaves is largely irrelevant for what we do in this paper.

The reader who is only interested in motives of classical rigid analytic varieties in the sense of Tate
and who is accustomed with Raynaud’s notion of formal models may skip this section and refer back to
it when needed.
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1.1. Recollections

Unless otherwise stated, adic rings are always assumed to be complete of finite ideal type in the sense of
[FK 18, Chapter I, Definitions 1.1.3 & 1.1.6]. (This is also the convention of [Abb10, Définition 1.8.4]
and [Hub93, Section 1].) Thus, an adic ring A is a complete linearly topologized ring whose topology is
I-adic for some ideal I C A of finite type. Morphisms between adic rings are always assumed to be adic
in the sense of [FK 18, Chapter I, Definition 1.1.15]. Thus, a morphism of adic rings A — B is a ring
homomorphism such that /B is an ideal of definition of B for one (and hence every) ideal of definition
I of A.

A useful basic fact when dealing with adic rings is the existence of /-adic completions in the sense
of [FK18, Chapter 0, Definition 7.2.6].

Lemma 1.1.1. Let A be a ring, I C A a finitely generated ideal and M an A-module. The Hausdorff
completion M = lim, ejy M /1" M of the A-module M endowed with the I-adic topology is itself an I-adic
topological A-module. More precisely, for m > 0 we have:

o I™M is closed in M and coincides with "M = lim, e I M [T M, which is the Hausdorff
completion of I"'M ;
o M/I"M — M/I'"M is an isomorphism.

Proof. This follows from [Bou98, Chapter 11, §2 n° 11, Proposition 14 & Corollary 1] when M is finitely
generated. See [FK 18, Chapter 0, Corollary 7.2.9 & Propositions 7.2.15 & 7.2.16] for general M. O

Notation 1.1.2. If A is an adic ring and T = (T;); is a family of indeterminates, we denote by A(T) the
algebra of restricted power series in T with coefficients in A, i.e., the I-adic completion of A[T] for an
ideal of definition I C A. Unless otherwise stated, given an ideal J ¢ A(T’), we denote by A(T)/J the
[-adically complete quotient, i.e., the quotient of A(T) by the closure of the ideal J.

Unless otherwise stated, formal schemes are always assumed to be adic of finite ideal type in the sense
of [FK18, Chapter I, Definitions 1.1.14 & 1.1.16]. Thus, a formal scheme X = (|X|, Ox) is a ringed
space with is locally isomorphic to Spf(A), where A is an adic ring (of finite ideal type, as always).
Morphisms of formal schemes are assumed to be adic, i.e., are locally of the form Spf(B) — Spf(A),
with A — B an adic morphism.

Let X be a formal scheme. An ideal I ¢ O« is said to be an ideal of definition if locally it is of the
form IOspe(a), wWhere A is an adic ring and I C A an ideal of definition. In this case, the ringed space
(1X], O /J) is an ordinary scheme which we simply denote by X/J. By [FK18, Chapter I, Corollary
3.7.12], every quasi-compact and quasi-separated formal scheme admits an ideal of definition which we
may assume to be finitely generated.

Definition 1.1.3. Let A be an adic ring. We say that A is of principal ideal type if it admits an ideal of
definition which is principal (i.e., generated by a nonzero divisor). We will say that A is of monogenic
ideal type if it admits an ideal of definition which is monogenic (i.e., generated by one element).
Similarly, we say that a formal scheme is of principal ideal type (resp., of monogenic ideal type) if it
admits an ideal of definition which is principal (resp., monogenic). There are also obvious local versions
of these notions where we only require that an ideal of definition of a specific type exists locally.

Remark 1.1.4. Let A be an adic ring of monogenic ideal type and 7 € A a generator of an ideal of
definition of A. Then A is of principal ideal type if and only if A is n-torsion-free.

Notation 1.1.5. We denote by FSch the category of formal schemes and by FSch®® its full subcat-
egory spanned by quasi-compact and quasi-separated formal schemes (in the sense of [FK18, Chap-
ter I, Definitions 1.6.1 & 1.6.5]). Note that the category Sch (resp., Sch%%*) of schemes (resp., of
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quasi-compact and quasi-separated schemes) can be identified with the full subcategory of FSch (resp.,
FSch%®) spanned by those formal schemes for which (0) is an ideal of definition.

Notation 1.1.6. The inclusion of the category of reduced schemes into FSch admits a right adjoint which
we denote by X — X . It commutes with gluing along open immersions and satisfies X = (X/J)eq
whenever X admits an ideal of definition J ¢ O«. The scheme X is called the special fiber of X.

The following notions agree with the ones introduced in [FK 18, Chapter I, Definitions 4.2.2 & 4.3.4
&4.7.1 &4.8.12 &5.3.10 & 5.3.16].

Definition 1.1.7. Let f : Y — X be a morphism of formal schemes.

(1) We say that f is a closed immersion (resp., finite, proper) if locally on X there is an ideal of definition
J c Ox such that the induced morphism of schemes Y/J — X/J is a closed immersion (resp., finite,
proper).

(2) We say that f is an open immersion (resp., adically flat, étale, smooth) if locally on X there is an
ideal of definition J € Ox such that the induced morphism of schemes Y/J" — X/J" is an open
immersion (resp., flat, étale, smooth) for every n € N.

Let X be a formal scheme. An ideal J c O« is said to be admissible if, locally on X, it is finitely
generated and contains an ideal of definition. An admissible blowup of X is the blowup of an admissible
ideal. For more details, see [FK 18, Chapter II, §1.1]. We recall here that the composition X"’ — X of
two admissible blowups X" — X’ and X’ — X is itself an admissible blowup if X is quasi-compact and
quasi-separated. (This is [FK18, Chapter II, Proposition 1.1.10].) We denote by B(X) the category of
admissible blowups and morphisms of formal X-schemes. If X is quasi-compact and quasi-separated,
then B(X) is cofiltered (by [FK 18, Chapter II, Proposition 1.3.1]) and if U — X is a quasi-compact open
immersion, then the obvious functor B(X) — B(U) is surjective (by [FK 18, Chapter II, Proposition
1.1.9]).

Notation 1.1.8. (See [FK 18, Chapter II, §2]) We denote by RigSpc°®* the 1-categorical localisation
of the category FSch®® with respect to admissible blowups. More concretely, there is a functor
(—)"e : FSch®® — RigSpcd® which is a bijection on objects and, given two quasi-compact and
quasi-separated formal schemes X and Y, we have

Homg; s (Y18, (18) = colim  Hom cas (Y, X0). 3
RigSpcd©d (9 ) Yoy e B(Y) FSch¢d (y ) 3)

The objects of RigSpc¥® are the quasi-compact and quasi-separated rigid analytic spaces (according
to [FK18, Chapter II, Definitions 2.1.1 & 2.1.2]). If X is a quasi-compact and quasi-separated formal
scheme, X"¢ is called the Raynaud generic fiber (or simply the generic fiber) of X. For this reason, we
sometimes write ‘X,,” instead of ‘X"'®’. A map in RigSpcd°® is an open immersion if it is isomorphic to
the generic fiber of an open immersion in FSch9°%®. General rigid analytic spaces are obtained by gluing
along open immersions from objects in RigSpc¥®® as in [FK18, Chapter II, §2.2. (¢)]. The resulting
category is denoted by RigSpc, and its objects are the rigid analytic spaces. There is also a generic
fiber functor (—)"€ : FSch — RigSpc extending the one on quasi-compact and quasi-separated formal
schemes.

Notation 1.1.9. Let X be a rigid analytic space. A formal model for X is a formal scheme X endowed
with an isomorphism X =~ X"¢ (see [FK 18, Chapter II, Definition 2.1.7]). Formal models of X form
a category which we denote by Mdl(X). When X is quasi-compact and quasi-separated, Mdl(X) is
cofiltered by [FK 18, Chapter II, Proposition 2.1.10]. Similarly, given a morphism f : ¥ — X of rigid
analytic spaces, we have a category Mdl(f) of formal models of f whose objects are morphisms of
formal schemes ¢ : Y — X together with an isomorphism f =~ ¢"¢ in RigSpCA]. When X and Y are
quasi-compact and quasi-separated, the category MdI( f) is cofiltered.

Remark 1.1.10. If X is a formal scheme and J is an ideal of definition of X, then the admissible blowup
of J is locally of principal ideal type (in the sense of Definition 1.1.3). Therefore, every quasi-compact

https://doi.org/10.1017/fms.2022.55 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.55

Forum of Mathematics, Sigma 9

and quasi-separated rigid analytic space X admits formal models which are locally of principal ideal
type and these form a cofinal subcategory of Mdl(X) which we denote by Mdl’(X).

Notation 1.1.11. Let X be a quasi-compact and quasi-separated rigid analytic space. We define a locally
ringed space (|X|, O%) by

(IXI.0%) = | lim (1], Ox).

If Xo is a formal model of X and J € Ox, is an ideal of definition, then JOF, is an invertible ideal in
0% We set Ox = (J,50(JO0%)™". Then Ox is a sheaf of rings which does not depend on J and which
contams 0% By gluing along open immersions, the assignment X + (|X|, Ox, O%) can be extended
to any rigid analytic space X. For more details, we refer the reader to [FK 18, Chapter II, §3]. We say
that | X| is the topological space associated to X, that Ox is the structure sheaf of X and that 0% is the
integral structure sheaf of X.

Remark 1.1.12. Let X be a rigid analytic space. The topological space |X| is valuative, in the sense of
[FK 18, Chapter 0, Definition 2.3.1], and spectral if X is quasi-compact and quasi-separated. The Krull
dimension (or simply the dimension) of X is defined to be the Krull dimension of | X|, i.e., the supremum
of the lengths of chains of irreducible closed subsets of | X|.

Notation 1.1.13. Let X be a rigid analytic space and x € |X| a point. By [FK 18, Chapter II, Proposition
3.2.6], the local ring O}, _ is a prevaluative ring. (Here we use the terminology of [Abb10, Définition
1.9.1].) More precisely, there is a nonzero divisor a € O}’x with the following properties:

Every finitely generated ideal of O;’(’ .. containing a power of a is principal;
0% ([a7']1=0x x;
mMx x = nen a"(‘);(’x, where my , is the maximal ideal of Ox y;
¥ x /my is a valuation ring of the residue field Ox . /m,. We denote by I, its value group (denoted
multiplicatively).

O O O O

We let «*(x) be the a-adic completion of O, _, x(x) its fraction field and k(x) the residue field of x*(x).
We also let «°(x) C «(x) be the subring of power bounded elements. Then «°(x) is the unique height
1 valuation ring containing «*(x). Moreover, k(x) is a non-Archimedean complete field for the norm
induced by «°(x).

Definition 1.1.14. Let f : Y — X be a morphism of rigid analytic spaces.

(1) We say that f is a closed immersion (resp., finite, proper) if, locally on X, f admits a formal model
which is a closed immersion (resp., finite, proper).

(2) We say that f is a locally closed immersion if it can be written as the composition of a closed
immersion Y — U followed by an open immersion U — X.

(3) We say that f is étale (resp., smooth) with good reduction if, locally on X, f admits a formal model
which is étale (resp., smooth).

We next discuss the analytification functor following [FK 18, Chapter II, §9.1].

Construction 1.1.15. Let A be an adic ring, I C A an ideal of definition, U = Spec(A) . Spec(A/I)
and S = Spf(A)"2. There exists an analytification functor

(—=)* : Sch'™/U — RigSpc/S,

where Sch!/U is the category of U-schemes locally of finite type. This functor is uniquely determined
by the following two properties.
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(1) Itis compatible with gluing along open immersions. o
(2) For a separated finite type U-scheme X with an open immersion X — X into a proper A-scheme
and complement ¥ = X \ X, we have

xan — (?)rig N (?)rig, (4)

where, for an A-scheme W, W= colim, W ®4 A/I" is the I-adic completion of W.

In the second property, one may replace Y with the closure in X of X x4 U ~. X. That the right-hand side
of equation (4) is independent of the choice of the compactification, follows from [FK18, Chapter II,
Propositions 9.1.5 & 9.1.9].2

1.2. Relation with adic spaces

Recall from [Hub96, page 37] that a Tate ring is a topological ring A admitting a topologically nilpotent
unit and an open subring Ag C A which is adic. (Here, by convention, Tate rings are assumed complete.)
The ring Ay is called a ring of definition. If r € A is a topologically nilpotent unit contained in Ao, then
the topology of Ag is m-adic, i.e., the 71" Ay form a fundamental system of open neighbourhoods of 0.
A morphism of Tate rings f : A — B is a continuous morphism of rings for which there exists rings of
definitions Ag C A and By C B with f(Ag) C Byp.

Notation 1.2.1. Given a Tate ring A, we denote by A° C A the subring of power bounded elements
and A°° C A° the ideal of topologically nilpotent elements. We say that A is uniform if A° is bounded
(which is equivalent to ask that A° is a ring of definition).

A Tate affinoid ring A is a pair (A*, A*), where A* is a Tate ring and A* is an integrally closed open
subring of A* contained in (A*)°.

Construction 1.2.2.

(1) Let A be an adic ring of principal ideal type and 7 € A a generator of an ideal of definition. We
associate to A a Tate affinoid ring A% = (A%, A%), where A%* = A[n~!] and A% is the integral
closure of A in A[n71].

(2) The functor A — A%, from adic rings of principal ideal type to Tate affinoid rings, admits a ind-right
adjoint. The latter associates to a Tate affinoid ring R = (R*, R*) the ind-adic ring Ry, consisting of
those rings of definition of R* contained in R*.

Remark 1.2.3. When the Tate affinoid ring R is uniform, then the associated ind-adic ring Ry is
isomorphic to an adic ring. In fact, we have R, = R™.

Lemma 1.2.4. The functor R = Ry, from the category of Tate affinoid rings to the category of ind-adic
rings of principal ideal type, is fully faithful.

Proof. Indeed, let R and R’ be two Tate affinoid rings and f : Ry, — Ré a morphism of ind-adic rings.
There exists rings of definition Ry € R* and Rj C R’* contained in R* and R"* such that f restricts to
a morphism of adic rings fo : Ry — R;. Then fy induces a morphism of Tate rings f* : R* — R’
Since fj is the restriction of f, for every ring of definition Ry C R* containing R and contained in R*,

there exists a ring of definition R{ C R"* contained in R"* and a morphism f; : Ry — R] extending fo.
This shows that f* maps R* into R™* as needed. m]

Given a Tate affinoid ring A = (A*, A™), we denote by Spa(A) = (|Spa(A)l, Ospa(a)» nga(A>) the
preadic space associated to A as in [Hub96, pages 38-39]. In general, OF c O are presheaves of rings
on the topological space |Spa(A)| which might fail to be sheaves.

2Proposition 9.1.9 of loc. cit. is stated under the assumption that A is topologically universally rigid-noetherian, but this
assumption is unnecessary.
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Proposition 1.2.5.

(1) Let A be an adic ring of principal ideal type. There is a homeomorphism |Spf(A)"€| ~ |Spa(A%)|

modulo which ngf( A)re (resp., Ospf(ayrie) is isomorphic to the shedfification of nga (A%) (resp.,

OSpa(Ah) ).
(2) Let R be an affinoid ring. There exists a homeomorphism |Spa(R)| =~ lim |Spf(Rh)rig| modulo which

Em SpE(Ry )" (resp., Oy Spf(Ry)rie) IS isomorphic to the sheafification of nga(R) (resp., Ospa(r))-
Proof. A point x € |Spf(A)"2| determines a morphism of adic rings A — «*(x), and hence a con-
tinuous valuation v, : A — Iy U {0} landing in T’} U {0}. (Here I'f c I denotes the submonoid
defined by the inequality < 1.) Since the image of x in x*(x) is nonzero, v, extends uniquely to a
continuous valuation v, : A¥ — T, U {0}. Moreover, v, maps A% into It U {0} since A% is inte-
gral over A. Therefore, v, belongs to Spa(AF). It is easy to see that x > v, is a bijection, which is
continuous and open. More precisely, given elements ay, . . ., a, in A generating an admissible ideal of
A, the open subset |Spf (A(Z—(‘), cees Z—g))“g| C |Spf(A)"8| is mapped bijectively to the rational subset
|Spa(Ah(Z—(‘J, e, Z—z))l C |Spa(AY)|. This also shows that Osgpr(ayrie is the sheafification of Ogy,(4s)-

Assertion (2) can be deduced from assertion (1) and the fact that the counit map (qu)h — R identifies
the Tate affinoid ring R with the colimit of the ind-Tate affinoid ring (Rh)h. O

Definition 1.2.6. A uniform adic space is a triple X = (|X|, Ox, O%), consisting of a topological space
|X| and sheaves of rings O3, C Ox, which is locally isomorphic to Spa(A), where A is a stably uniform
Tate affinoid ring in the sense of [BV 18, pages 30-31]. (This is reasonable since by [BV 18, Theorem 7]
every stably uniform Tate affinoid ring is sheafy.)

Corollary 1.2.7. Let Adic be the category of uniform adic spaces. Then there exists a fully faithful
embedding Adic — RigSpc which is compatible with gluing along open immersions and which sends
Spa(R) to Spf(R*)"e.

Proof. Ttsuffices to treat the affinoid case; the general case follows then by gluing along open immersions.
Given two stably uniform Tate affinoid rings A and B, the fact that A is sheafy implies that there is a
bijection Hom(A, B) ~ Hom(Spa(B), Spa(A)). It follows from Remark 1.2.3 that there is a functor
Spa(A) +— Spf(A*)", from affinoid uniform adic spaces to rigid analytic spaces, and it remains to
show that the map

Hom(A™, BY) — Hom(Spf(B*)"€, Spf(A™)"¢),

with A and B as above, is a bijection. An element of the right-hand side can be represented by a morphism
Y — Spf(A*), where Y — Spf(B™) is an admissible blowup. We may assume that Oy is 7-torsion-
free, with 7 a generator of an ideal of definition in B*. We claim that O(Y) = B* which implies that
Y — Spf(A*) factors uniquely through Spf(B™), finishing the proof.

Let (Y;); be an affine open covering of Y and set Y;; = Y; N'Y;. Let B; and B;; be the Tate affinoid
rings associated to the adic rings O(Y;) and O(Y; ), respectively. Then (Spa(B;)); is an open covering of
Spa(B), and Spa(B;;) = Spa(B;) NSpa(B;). Since B is sheafy, we deduce that B* is the equaliser of the
usual pair of arrows []; Bf =3 [1;; BZ‘J Since Oy is n-torsion-free, we have inclusions O(Y;) C B} and
0(Y:j) c B:rj This proves that O(Y), which is the equaliser of []; O(Y;) =3 [1;; O(Y;;), is contained
in B* as needed. o

1.3. Etale and smooth morphisms

In Definition 1.1.14, we introduced the classes of étale and smooth morphisms with good reduction.
These classes are too small, and we need to enlarge them to get the correct notions of étaleness and
smoothness in rigid analytic geometry. First, we introduce a notation.
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Notation 1.3.1. Let A be an adic ring and J C A an ideal. We denote by J* the ideal of A consisting
of those elements a € A for which there exists an ideal of definition I C A such that al C J. The ideal
J%% is called the saturation of J.

We say that J is saturated if J = J%'. The saturation of an ideal is a saturated ideal.

Remark 1.3.2. If A is an adic ring of principal ideal type and J C A a saturated ideal, then J is closed
and A/J is also of principal ideal type. Moreover, for a closed ideal J C A, the quotient A/J is of
principal ideal type if and only if J is saturated.

Our definition of étaleness uses the Jacobian matrix. Compare with [Fuj95, Definition 1.3.1].
Definition 1.3.3.

(1) Let A be an adic ring and B an adic A-algebra. We say that B is rig-étale over A if there exists a
presentation B ~ A(t|,...,t,)/J and elements fi,..., f,, € J such that (fi,..., f,)% = J% and
the determinant of the Jacobian matrix det(J f;/0t;) generates an open ideal in B.

(2) A morphism Y — X of formal schemes is said to be rig-étale if, locally for the rig topology on X
and Y (see Definition 1.4.10 below), it is isomorphic to Spf(B) — Spf(A) with B rig-étale over A.
(When X and Y are quasi-compact, this simply means that, after replacing X and Y by admissible
blowups, the resulting morphism is locally isomorphic to Spf(B) — Spf(A) with B rig-étale
over A.)

(3) A morphism of rigid analytic spaces Y — X is said to be étale if, locally on X and Y, it admits
formal models which are rig-étale.

Remark 1.3.4. If the rigid analytic space X is assumed to be universally noetherian (in the sense of
[FK 18, Chapter II, Definition 2.2.23]), then a morphism f : ¥ — X is étale if and only if it is flat
and neat (i.e., Q¢ = 0). This follows from [Hub96, Propositions 1.7.1 and 1.7.5] together with [FK18,
Chapter II, Theorem A.5.2]. See also [Fuj95, Proposition 5.1.6] which is proven under more restrictive
assumptions.

Remark 1.3.5. Let A be an adic ring and B a rig-étale adic A-algebra given by A(ty,...,t,)/J with J
containing fi, ..., f, as in Definition 1.3.3. Consider the adic A-algebras

B = A<l1, e ,tn>/(f1, - ,fn) and B = A<ll, e ,ln>/(f1, e ’fn)sat.

We have surjective maps B’ — B — B’ inducing isomorphisms Spf(B’")"& ~ Spf(B)"¢ ~ Spf(B’)".
Moreover, B’ and B" are rig-€tale over A. The case of B” is clear. For B’, we need to prove the following
statement. Let C be an adic ring and ¢ € C an element. Then ¢ generates an open ideal in C if and
only if it generates an open ideal in C/(0)**. Indeed, let I be an ideal of definition and assume that
I  (c) + (0)%, We need to show that a power of / is contained in (c). Since I is finitely generated, we
may find elements vy, ..., v,, in (0)** such that I C (c¢) + (v1,..., V). Let r be an integer such that
v;I" =0forall I <i < m.Thenclearly I"*! c cI” c (c) as needed.

Lemma 1.3.6. Let A be an adic ring of monogenic ideal type and n € A a generator of an ideal of
definition of A. Let B be a rig-étale A-algebra. Then there exists an integer N € N such that for every
n-torsion-free adic A-algebra C, the map Homa (B, C) — Homy,~ (B/nN,C[nN) is injective.

Proof. The proof of [Fuj95, Proposition 2.1.1] can be easily adapted to the situation considered in the
statement. For the reader’s convenience we recall the argument.

Form € N, we set A,, = A/n™, B,, = B/n™ and C,, = C/n™. Since B is rig-étale over A, there
exists an integer ¢ such that ng A, is annihilated by 7¢ independently of m. (Indeed, if B is given as
in Definition 1.3.3, it suffices to take c so that 7¢ belongs to the ideal generated by det(d f;/0t;).) Now
let f, f’ : B — C be two morphisms of A-algebras inducing the same morphism f,, : B, — C,, for
some m > ¢ + 1. We will show that f,,,41 = f, ., which suffices to conclude using induction.
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We may consider f2,, and f;, as deformations of f,,. The difference between these deformations is

classified by an element € € Hom(C,, ®3p,), Q}g /A , " C [x*"C). Since 7 is a nonzero divisor of C

and ng A, annihilated by ¢, the image of any C-linear morphism C,, ®gp,, 9119,,, A, " amC/a*mC

is contained in 72"~¢C/n*™C. In particular, the map

Bin/Am’

is identically zero. Since the image of € by this map classifies the difference between fy,,+1 and f |, we
get the equality fi41 = f) ;- O

Proposition 1.3.7. Let A be an adic ring of monogenic ideal type and m € A a generator of an ideal of
definition of A. Let t = (t1, .. .,t,) be a system of coordinates and f = (fi, ..., fn) an n-tuple in At).
Let J C A(t) be an ideal such that (f) c J € (f)™ and set B = A(t)/J. Assume that det(d f;/0t;)
generates an open ideal in B so that B is a rig-étale adic A-algebra. Then, there exists a positive integer
N such that, for every m-torsion-free adic A-algebra C and every integer e > N, the map

Homu (B, C) — im{HomA/ﬂze (B/n*¢,C[n*¢) — Homg e (B/7°, C/ne)} (5)

is bijective. Moreover, the integer N depends continuously on f, i.e., we may find one which works for
every n-tuple f" = (f/,..., f,,) in A(t) which is n-adically sufficiently close to f.

Proof. For N sufficiently large, the injectivity of the map (5) follows from Lemma 1.3.6. The fact that
there is an N which works for all f’ close enough to f follows from the proof of Lemma 1.3.6. (Indeed,
the N depends only on the ideal generated by det(d f;/d¢;).)

For the surjectivity of the map (5), it is enough to solve the following problem: Given an n-tuple cg =
(co.15- -+ »Co.n) in C such that the components of f(cg) belong to %€, find an n-tuple ¢ = (¢, ...,Cpn)
in C such that f(c) = 0 and the components of ¢ — ¢ belong to 7¢C. (Indeed, since C is r-torsion-free
an n-tuple ¢ such that f(c) = 0 determines an A-morphism B — C.)

This problem can be solved using the Newton method as in the first step of the proof of [Ayol5,
Lemme 1.1.52]. In fact, one can also remark that the argument in loc. cit. is valid more generally for non-
Archimedean Banach rings, i.e., complete normed rings with a non-Archimedean norm. In particular,
it applies with ‘A, “‘C” and ‘R’ in loc. cit. replaced with A[7~!], B[x~'] and C[7~'] endowed with
the natural norms for which A/(0)**, B/(0)*" and C = C/(0)** are the unit balls. (More precisely,
for a € A[n7'], we set ||a|| = e™V (@), where v(a) is the largest integer such that a € 7¥(® (A/(0))
and similarly for B and C.) Since 7 is a nonzero divisor of C, a solution ¢ = (c1, . ..,c,) in (C[x~'])"
of the system of equations f = 0, close enough to cp, determines a solution in C". We may take for
N an integer which is larger than In(2M?) with M as in [Ayo15, page 46].° It is clear that N depends
m-adically continuously on f. O

Proposition 1.3.8. Let A be an adic ring of monogenic ideal type and m € A a generator of an ideal
of definition of A. Let B be a rig-étale adic A-algebra admitting a presentation B = A{t)/(f)**, with
t=(t1,...,1,) a system of coordinates and f = (fi, ..., fn) an n-tuple in A(t) such that det(0 f;/0t;)
generates an open ideal in B. Then there exists an integer N such that the following holds. For every n-
tuple f" = (f],..., f,) in A(t) such that '~ f belongs (7N A())", the adic A-algebra B’ = A{t) [/ (f')*™

is isomorphic to B. Moreover, there is an isomorphism B ~ B’ induced by n-tuple g = (g1, ...,8,) in
A(t) such that g — t belongs to (mA(t))".
Proof. This follows by applying Proposition 1.3.7 to the rig-étale adic A-algebras B and B’. O

Notation 1.3.9. Let A be an adic ring. We denote by €4 the category of rig-€tale A-algebras and &',
its full subcategory spanned by those adic A-algebras whose zero ideal is saturated. (Thus, every object
B € &', admits a presentation B =~ A(r)/(f)* with r = (t1,...,1,) and f = (fi,..., fu) such that

3Here and below, the page references to [Ayol5] correspond to the published version.
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det(0f;/dt;) generates an open ideal in B.) The inclusion &/, — €, admits a left adjoint given by
B +— B/(0)*™. Given a morphism of adic rings A] — Ay, there is are induced functors 4, — €4, and
&), — &), givenby B~ A;®4, Band B — (A, ®4, B)/(0)%", respectively.

Corollary 1.3.10. Let (Ay)q be a filtered inductive system of adic rings of monogenic ideal type with
colimit A (in the category of adic rings). Then the obvious functor

colaim 82‘& - &) ©6)

is an equivalence of categories.

Proof. Let R be the colimit of (A, ), taken in the category of discrete rings. We may assume that there is
a smallest index o, and we fix 7 € A,, generating an ideal of definition of A,. Then A = lim, ey R/7"R,
and there is a map of rings R — A with kernel J = (,, 7' R and with dense image RcC A We split the
proof into two steps.

Step 1

First, we prove that the functor (6) is essentially surjective. By Proposition 1.3.8, an object B € &/,
admits a presentation of the form B = A(r)/(f )Sm where t = (t1,...,1,) is a system of coordinates
and f = (fl, .. fn) an n-tuple in R[t] such that g = det(ﬁfl/(?t]) generates an open ideal in B. Using

Remark 1.3.5, we can find an integer N and an element h e A(t) such that 7V hg belongs to the
closure of the ideal ( f) c R[¢] in A(¢). In particular, we may write

n

N —hg = Zaﬁﬁnw

i=1

withv € A(t) and a,. ..,a, € R[t]. Write i = hy +ElnN+1 with hg € R[] and hy € A(). Replacing
h by ho and ¥ by v+ i, we > may assume that h belongs to R[t]. It follows from Lemma 1.1.1 that the
expression 7 — hg — Y| @; f; € R[] belongs to 7N +1R[t] Said differently, we may also assume that

¥ € R[t]. We now choose a lift f = (fi,..., fn) off to an n-tuple in R[] and set g = det(d f;/dt;).

We also choose lifts &, ay,...,a, € R[t] of h,ay,...,ad,. Since the elements of J are divisible by any
power of 7, we may also find a lift v € R[¢] of v such that

n

v —hg:Zaifi+v7rN+1.

i=1
For « sufficiently big, the previous equality can be lifted to an equality

n

N _ N+1
7% = haga —Zaa,ifa,i"'vaﬂ
i=1

in A, [t] with the property that g, = det(d fq,i/0t;). Since 1 — v, is invertible in A,(¢), it follows
that B, = Ao {t)/(fo)* is a rig-étale A ,-algebra. Clearly, the functor (6) sends B, to B.

Step 2
We now prove that the functor (6) is fully faithful. We fix two objects B,,, C,, € € ;\0. For an index a, we

set By = (Bo®a,Aq)/(0)% and define C,, similarly. We also set B = (B,®4,A)/(0)*" and define C
similarly. We want to show that

colimHomy , (By, Co) — Homyu (B, C)
a
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is a bijection. (This is enough since we are free to change the smallest index 0. We also used that the
colimit in equation (6) is filtered in order to describe the hom-set in the domain.) The above map can be
rewritten as

colimHomy,, (B,, Co) — Homy, (B,, C).
a

Since C and the C,’s are n-torsion-free, we may replace B,, by any rig-étale A,-algebra B;, such that
B, =~ B/ /(0)*". By Remark 1.3.5, we may choose B, topologically finitely presented. We now apply
Proposition 1.3.7: There exists an integer N such that the maps

Homy, (B, Cqy) — im{Hoon/,,m (B;/NZN, Co/m*N) > Homy /v (B;/ﬂN, Ca/nN)}

are bijections and similarly for C (instead of C, ). Since filtered colimits commute with taking images,
we are left to show that

colimHomy,, /e (B, /¢, Cq/n®) — Homy, /e (B, /¢, C[7¢)

is a bijection for any positive integer e. This is clear since B/, /7€ is a finitely presented A, /7¢-algebra
and C/n¢ is the colimit of the filtered system (Cq/7¢)q. O

For later use, we record the following two results.

Lemma 1.3.11. Let ¢ : X’ — X be an étale morphism of rigid analytic spaces, and let s : X — X' be
a section of e. Then s is an open immersion.

Proof. The question is local on X and around s(X). Thus, we may assume that X = Spf(A)"e with A
an adic ring of principal ideal type, that X’ = Spf(A’)"& with A’ a rig-étale adic A-algebra and that
s is induced by a morphism of A-algebras & : A’ — A. Fix a generator 7 of an ideal of definition
of A. By Proposition 1.3.8, we may assume that A’ = A(t)/(f)% with t = (¢1,...,t,) a system of
coordinates and f = (fi,..., f,) an n-tuple in A[¢] such that det(d f;/0t;) generates an open ideal in
A’. Consider the A-algebra C = A[¢]/(f). Then, C[x~'] is étale over A[x~!] and & induces a morphism
of A[n~!']-algebras C[n~!] — A[n~!]. From standard properties of ordinary étale algebras, we deduce
that Spec(A[n7!]) — Spec(C[n~!]) is a clopen immersion. Passing to the analytification over A in the
sense of Construction 1.1.15, we deduce a clopen immersion Spf(A)" e — Spec(C[x~'])*. But the
latter factors as follows:

Spf(A)"€ 3 Spf(A”)"E — Spec(C[x~' )™,
where the second map is an open immersion. This finishes the proof. O

Proposition 1.3.12. Let i : Z — X be a closed immersion of rigid analytic spaces. Let X’ be an étale
rigid analytic X-space and s : Z — X' a partial section. Then, locally on X, s extends to a section
§: U — X' defined on an open neighbourhood U of Z. Moreover, § is an open immersion.

Proof. The question being local on X, we may assume that X = Spf(A)"€ with A an adic ring of principal
ideal type, and Z = Spf(B)"¢ with B a quotient of A by a closed ideal I C A. We may also assume that
X’ = Spf(A’)"i& with A’ a rig-étale A-algebra and that the section s is induced by a morphism of A-adic
rings i : A’ — B.Let m € A be a generator of an ideal of definition. Without loss of generality, we may
assume that B and A’ are n-torsion-free.

For N € N and J ¢ I a finitely generated ideal, consider the adic A-algebra C; x = A(J/7xV)
given as the -adic completion of the sub-A-algebra A[J/aN] c A[x~!] generated by fractions a /7™
with a € J. Then B is the filtered colimit in the category of adic rings of the C; n’s when N and J
vary. Applying Corollary 1.3.10 to this inductive system, we can find J and N such that the image of
Homy (A’,Cy, n) — Homyu (A’, B) contains h. This means that the section s extends to an X-morphism
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Spf(Cy, n)"& — Spf(A’)"ie. Since Spf(C, n)"€ is an open subspace of X, this proves the existence of
§ as in the proposition. That § is an open immersion follows from Lemma 1.3.11. O

Definition 1.3.13.

(1) Let A be an adic ring and B an adic A-algebra. We say that B is rig-smooth over A if, locally on B,
there exists a rig-étale morphism of adic A-algebras A(t,...,t,,) — B.

(2) A morphism Y — X of formal schemes is said to be rig-smooth if, locally for the rig topology on X
and Y (see Definition 1.4.10 below), it is isomorphic to Spf(B) — Spf(A) with B rig-smooth over A.

(3) A morphism of rigid analytic spaces Y — X is said to be smooth if, locally on X and Y, it admits a
formal model which is rig-smooth.

Remark 1.3.14. By [Hub96, Corollary 1.6.10 & Proposition 1.7.1], we see that, via the embedding of
Corollary 1.2.7, a map of uniform adic spaces is smooth (resp., étale) if and only if the associated map
of rigid analytic spaces is.

The next proposition is similar to [Elk73, page 582, Théoreme 7], but we do not assume the adic ring
A to be noetherian.

Proposition 1.3.15. Let A be an adic ring of monogenic ideal type and m € A a generator of an ideal of
definition of A. Let B be a rig-étale (resp., rig-smooth) adic A-algebra, and assume that B is w-torsion-
free. Then, locally on B, there exists a finitely generated ni-torsion-free A-algebra P such that P[n~'] is
étale (resp., smooth) over A [77'] and its m-adic completion pP= limy, ey P/ is isomorphic to B.

Proof. According to [Elk73, pages 588-589], the proof of [Elk73, page 582, Théoreme 7] can be
adapted to cover the above statement. Alternatively, one can use Proposition 1.3.8 as follows. By this
proposition, we may assume that the adic A-algebra B is of the form

B=A<t1,.-~,tmysl7-~~’sn>/(f1»'°'sfn)sat’

with fi,..., fa € Alt1,...,tm, S1,...,5,] and such that det(Jf;/0s;) generates an open ideal in B.
(The rig-étale case corresponds to m = 0.) Consider the A-algebra

P =Altr,ootmy Sty Sul/(fioe oo fu)™

whose 7-adic completion is B. Let e € P’ be the image of det(d f;/ds;) in P’. By assumption, a power
of 7 is a multiple of e in the w-adic completion of P’. Thus, there are elements b, ¢ € B and an integer
N such that 7V = e - b + caV*!. The A-algebra P = P’[(1 — c)™'] satisfies the properties required in
the statement. O

The following is a variant of Proposition 1.3.12 for smooth morphisms. It will play a crucial role in
the proof of the localization property for rigid analytic motives (see Proposition 2.2.3).

Proposition 1.3.16. Let Z — X be a closed immersion of rigid analytic spaces. Let X’ be a smooth
rigid analytic X-space and s : Z — X' a partial section. Then, locally on X, we may find an open
neighbourhood U C X of Z, an open neighbourhood U’ C X' of s(Z) and an isomorphism U’ ~ B[],
Sfor some integer m > 0, modulo which s : Z — U’ is the zero section over Z.

Proof. The problem being local on X and around s(Z), we may assume that X’ is étale over B and,
by change of coordinates, that the composition
Z5 X > BY

is the zero section over Z. Applying Proposition 1.3.12 to the étale morphism X’ — BY’ and the closed
immersion Z — B given by the zero section over Z, we find locally an open neighbourhood U’ C X’
of s(Z) such that U" — B is also an open immersion. Letting U be the inverse image of U’ by the zero
section X — B¢ and replacing U’ by U’ xx U, we may assume that U is an open neighbourhood of
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the zero section of By, . Since the zero section of B, admits a system of fundamental neighbourhoods
which are m-dimensional relative balls, we may also assume that U’ is isomorphic to By} as needed. O

We end this subsection with the following result.

Proposition 1.3.17. Let f : Y — X be a smooth morphism of rigid analytic spaces. Then the induced
map |f] : Y| = |X| is open.

Proof. 1t is enough to show that f(|Y|) is open in | X|. The question is local on X and Y. By Proposition
1.3.15, we may assume that X = Spf(A)"¢, with A an adic ring of principal ideal type, and Y = Spf(B)"¢,
with B = P the r-adic completion of a finitely presented A-algebra P such that P[7~'] is smooth over
A [7r‘1 ]. (As usual, 7 is a generator of an ideal of definition of A. Also, note that finite presentation in
Proposition 1.3.15 can be assumed if we don’t insist on m-torsion-freeness.) By the Raynaud—Gruson
platification theorem [RG71, Theorem 5.2.2] and working locally over X, we may further assume that
P is flat over A. By [Gro66, Chapitre IV, Théoréme 2.4.6], the morphism Spec(P) — Spec(A) is
then open, and we denote by U C Spec(A) its image. Let (a;); be a family in A generating the ideal
defining the complement of U in Spec(A). Let A; be the m-adic completion of A [al.‘l] and B; the m-adic
completion of P; = P ®4 A;. Set X; = Spf(A;)"® and Y; = Spf(B;)"¢. By construction, (¥;); is an
open covering of Y, and it is enough to show that f(Y;) is open in X. We will show more precisely that
f(Y;) = X;, i.e., that Y; — X; is surjective.

Replacing X and Y by X; and Y;, we are reduced to showing that f : ¥ — X is surjective, for
X = Spf(A)"8 and Y = Spf(B)"¢ ~ Spf(P)"¢ as above, assuming furthermore that the A-algebra P
is faithfully flat. To do so, it will be enough to show the following assertion. If 3’ — Spf(A) is an
admissible blowup and Y’ = (X’ ®4 B)/(0)**, the induced map Y,. — X/  is surjective. (Indeed, by
[FK 18, Chapter III, Proposition 3.1.5], the obvious map |Y'| — |Y7,| is surjective.) Since P is flat over A,
the formal scheme X’ Xsyr(4) Spf(B) is already saturated and we have an isomorphism Y’/ = X’ /7 ®4 P.
In particular, we see that the map Y’/n — X’/ is faithfully flat and, hence, surjective as needed. O

1.4. Topologies

Open covers define the Zariski topologies on schemes and formal schemes and the analytic topology
on rigid analytic spaces. In this subsection, we introduce various finer Grothendieck topologies which
we use when discussing motives. On schemes, we mainly consider the étale and Nisnevich topologies.
These topologies extend naturally to formal schemes: A family (Y; — X); consisting of étale morphisms
is an étale (resp., a Nisnevich) cover if (Y; » — X ); is an étale (resp., a Nisnevich) cover.

Notation 1.4.1. Given a scheme S, we denote by Et/S the category of étale S-schemes. Similarly, given
a formal scheme 8, we denote by Et/S the category of étale formal S-schemes.

Lemma 1.4.2. Let 8 be a formal scheme. The functor X +— X induces an équivalence of categories
Et/S — Et/S, respecting the étale and Nisnevich topologies.

Proof. This follows immediately from [Gro67, Chapitre IV, Théoréme 18.1.2]. O

Notation 1.4.3. Given a rigid analytic space S, we denote by Et/S the category of étale rigid analytic
S-spaces (in the sense of Definition 1.3.3). We denote by Et# /S the full subcategory of Et/S spanned
by those étale rigid analytic S-spaces with good reduction (in the sense of Definition 1.1.14).

Definition 1.4.4. Let (Y; — X); be a family of étale morphisms of rigid analytic spaces. We say that this
family is a Nisnevich cover if, locally on X and after refinement, it admits a formal model (Y; — X);
which is a Nisnevich cover. Nisnevich covers generate a topology on rigid analytic spaces which we call
the Nisnevich topology.

Definition 1.4.5. Let (f; : ¥; — X); be a family of étale morphisms of rigid analytic spaces. We say
that this family is an étale cover if it is jointly surjective, i.e., |X| = UU; f;(|Y;|). Etale covers generate
the étale topology on rigid analytic spaces.
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Remark 1.4.6. By means of Proposition 1.2.5 and Remark 1.3.14, we see that the above definition of
étale covers agrees with the one for uniform adic spaces in [Hub96, Section 2.1]. Also, note that if X
is quasi-compact, then every étale cover of X can be refined by a finite subfamily. This follows from
Proposition 1.3.17.

Notation 1.4.7. The étale topology is generally denoted by ‘ét’ and the Nisnevich topology is denoted
by ‘nis’. Also, the Zariski topology is generally denoted by ‘zar’ and the analytic topology is denoted
by ‘an’.

Remark 1.4.8. If S is a scheme and 7 € {nis, ét}, we call (Et/S, 7) the small 7-site of S and similarly

for a formal scheme. If S is a rigid analytic space, we call (Et"/S, nis) the small Nisnevich site of S and
(Et/S, ét) the small étale site of S.

The big smooth sites introduced below are used for constructing the categories of motives.
Notation 1.4.9.

(1) If S is a scheme, we denote by Sch/S the overcategory of S-schemes and Sm/S its full subcategory
consisting of smooth objects. For 7 € {nis, ét}, we call (Sm/S, ) the big smooth site of S.

(2) If 8 is a formal scheme, we denote by FSch/8 the overcategory of formal S-schemes and FSm/$ its
full subcategory consisting of smooth objects. For 7 € {nis, ét}, we call (FSm/S, 7) the big smooth
site of S.

(3) If S is a rigid analytic space, we denote by RigSpc/S the overcategory of rigid analytic S-spaces
and RigSm/S its full subcategory consisting of smooth objects (in the sense of Definition 1.3.13).
For 7 € {nis, ét}, we call (RigSm/S, ) the big smooth site of S.

We next discuss the class of rig topologies on formal schemes.

Definition 1.4.10. Let (Y; — X); be a family of morphisms of formal schemes. We say that this family
is a rig cover if the induced family (Y;"* — X"€); is an open cover. The topology generated by rig covers
is called the rig topology and it is denoted by ‘rig’.

Remark 1.4.11. Let X be a quasi-compact and quasi-separated formal scheme. Then every rig cover of
X can be refined by the composition of an admissible blowup X’ — X and a Zariski cover of X’.

By ‘equivalence of sites’ we mean a continuous functor inducing an equivalence between the asso-
ciated ordinary topoi.

Lemma 1.4.12. Consider full subcategories V  FSch (resp., V c FSch/8 for a formal scheme §) and
V c RigSpc (resp. V c RigSpc/S with S = 8"2) such that:

o Vis stable by admissible blowups and quasi-compact open formal subschemes;
o V contains X" for every X € V, and every object of V is locally of this form.

Then the functor (=)"¢ : V — V defines an equivalence of sites (V,an) - (V,rig). In particular, we
have an equivalence of sites (RigSpc, an) — (FSch, rig) (resp., (RigSpc/S,an) — (FSch/8, rig)).

Proof. The statement would have been a particular case of [Hub96, Corollary A.4], except that we
don’t know a priori that the continuous functor (—)"¢ defines a morphism of sites and that we do not
assume that our categories have finite limits. (In fact, we are particularly interested in the case where V
is the category of rig-smooth formal 8-schemes, which does not admit finite limits.) Instead of trying
to modify the proof of [Hub96, Corollary A.4], we present an independent argument. We only treat the
absolute case since the relative case is similar.

By [SGAIV, Exposé III, Théoréme 4.1], we may assume that V ¢ FSch%?® and that V is the full
subcategory of RigSpci®®® spanned by objects of the form X" for X € V. The rig topology on V is not
subcanonical (except for very special choices of V). We denote by V' the full subcategory of the category
of sheaves of sets on (V, rig) spanned by sheafifications of representable presheaves. The obvious functor
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a:V — V', sending a formal scheme X to the sheaf associated of the presheaf represented by X, induces
an equivalence of sites (V’,rig) = (V, rig), where the topology of (V’, rig) is the one induced from the
canonical topology on the topos of sheaves on (V,rig). (This is a well-known fact which follows, for
example, from [SGAIV 1, Exposé IV, Corollaire 1.2.1]; see also [Ayo07b, Corollaire 4.4.52].) To prove
the lemma, we remark that there is an equivalence of categories V' ~ V which identifies the rig topology
on V" with the analytic topology on V. Indeed, for an admissible blowup Y — Y in V, the diagonal map
Y — Y’ xy Y’ is arig cover, which implies that Y’ — a is an isomorphism. Using that the Zariski
topology is subcanonical on V, we deduce that

Homyr(aY,aX) = colim Homy (Y, X
v )= Sy Home (4. 1)

for any X,Y € V. The result follows then by comparison with equation (3). O

Corollary 1.4.13. Let T € {nis, ét} be one of the topologies introduced above on rigid analytic spaces.
Consider full subcategories V C FSch (resp., V c FSch/8 for a formal scheme §) and V C RigSpc
(resp., V C RigSpc/S with S = 8"¢) satisfying the following conditions.

o If T =nis, then V is stable by admissible blowups and every étale morphism whose target is in 'V lies
entirely in'V.

o Ift = ét, then every rig-étale morphism whose target is in' 'V lies entirely in V.

o V contains X" for every X € V, and every object of V is locally of this form.

Then there exists a unique topology rig-t on V such that the functor (=)"¢ : V — V defines an
equivalence of sites (V, 1) — (V,rig-7). In particular, we have an equivalence of sites (RigSpc, T) —

(FSch, rig-7) (resp., (RigSpc/S, 1) — (FSch/8, rig-7)).

Remark 1.4.14. Corollary 1.4.13 gives us two more topologies on formal schemes: the rig-Nisnevich
topology (denoted by ‘rignis’) and the rig-étale topology (denoted by ‘rigét’). These topologies can be
described more directly by their corresponding notions of covers. A family (Y; — X); of morphisms
of formal schemes is a rig-Nisnevich cover if the induced family (H?g — X"i2); is a Nisnevich cover. In
particular, if X is a quasi-compact and quasi-separated formal scheme, then every rig-Nisnevich cover
of X can be refined by the composition of an admissible blowup X’ — X and a Nisnevich cover of X’.
Proposition 1.4.19 below gives an analogous result for rig-étale covers.

Remark 1.4.15. Summarizing, we have a diagram of morphisms of sites:

(FSch, ét) «—— (FSch, rigét) +—— (RigSpc, ét)

| J J

(FSch, nis) +—— (FSch, rignis) «+—— (RigSpc, nis)

| | |

(FSch, zar) +—— (FSch, rig) +—— (RigSpc, an).

Definition 1.4.16.

(1) Let A be an adic ring and B an adic A-algebra. We say that B is finite rig-étale if B is finite over A
and étale over Spec(A) . Spec(A/I) for an ideal of definition I of A.

(2) A morphism of formal schemes Y — X is said to be finite rig-étale if it is affine and, locally over
X, isomorphic to Spf(B) — Spf(A) with B a finite rig-étale adic A-algebra.

(3) A morphism of formal schemes Y — X is said to be a finite rig-étale covering if it is finite rig-étale
and the induced morphism |Y"€| — | X" is surjective.
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Lemma 1.4.17. Let A be an adic ring and B a finite adic A-algebra. Then Spf(B) — Spf(A) is a finite
rig-étale covering if and only if

Spec(B) ~\ Spec(B/IB) — Spec(A) ~ Spec(A/I) @)

is a finite étale covering, when I is an ideal of definition of A.

Proof. The morphism (7) is finite étale if and only if Spf(B) — Spf(A) is finite rig-étale. So we need
to show that the morphism (7) is surjective if and only if |Spf(B)"&| — |Spf(A)"#| is surjective. This
follows easily from the description of |Spf(A)™¢| in terms of valuation rings of residue fields of points
of Spec(A) ~\ Spec(A/I) and [Bou98, Chapter VI, §8, n° 6, Proposition 6]. O

Remark 1.4.18. Using the embedding of Corollary 1.2.7, it follows from Lemma 1.4.17 that a map of
uniform adic spaces is finite étale (as in [Hub96, Example 1.6.6.(ii)]) if and only if it has a finite rig-étale
formal model.

Proposition 1.4.19. Let X be a quasi-compact and quasi-separated formal scheme. Then every rig-
étale cover of X can be refined by the composition of an admissible blowup X’ — X, a Nisnevich cover
(Y — X’); and finite rig-étale coverings 2, — ..

Proof. Let (U; — X);es be arig-étale cover. We may assume that J is finite (see Remark 1.4.6) and
that XX = Spf(A) is affine with A an adic ring of principal ideal type. We fix a generator 7 € A of an
ideal of definition of A. By Proposition 1.3.15, we may refine the rig-étale cover and assume that each
U; is the adic completion of a finite presentation A-scheme U; which is étale over A [77']. (Note that
finite presentation in Proposition 1.3.15 can be assumed if we don’t insist on n-torsion-freeness.) By
the Raynaud—Gruson platification theorem [RG71, Theorem 5.2.2], there exists an admissible blowup
X" — X = Spec(A) such that the strict transform U j’ — X’ of U; — X is flat for every j. In particular,
the morphism U ]’ — X’ is also quasi-finite.

Let u;. and X’ be the adic completions of U j’ and X’. By construction, we have X"¢ ~ X"¢ and

u}“’g ~ ujg. Thus, (U} — X'); is also a rig-étale cover. Since Oy and the Ouff ’s are m-torsion-free,
we deduce that the family (u;. — X'); is jointly surjective. Equivalently, the family of quasi-finite
morphisms (U’ /m — X'/n); is jointly surjective. Using standard properties of the Nisnevich topology,

we can find a family of étale morphisms (¥, — X’); such that:

(1) (¥//m — X'/n); is a Nisnevich cover of X'/x;
(2) for every index i there is a index j and a clopen immersion Z! — U ]’ xx: Y! such that Z — Y/ is
finite and Z;/m — Y/ /m is surjective.

In addition to being finite, the morphism Z/ — Y/ is flat and étale over Yi’[ﬂ’l]. Since Z!/m — Y/ [n
is surjective, we may replace ¥/ by an open neighbourhood of Y/ /7 and assume that Z/ — Y/ is also
surjective. In particular, we see that Z; [77'] = Yl.’[n_l] is a finite étale covering. If Y] and Z; denote
the adic completions of ¥ and Z;, Lemma 1.4.17 implies that the morphisms Z; — Y/ are finite rig-
étale coverings. Moreover, the family (Y — X’); is a Nisnevich cover by point (1) above. Finally, the
family (Z. — X); refines the initial rig-étale cover as needed. O

Corollary 1.4.20. Let (84 ) be a cofiltered inverse system of quasi-compact and quasi-separated formal
schemes with affine transition maps, and let 8§ = lim, 8, be the limit of this system. We set S, = S3°
and S = 8. Then, there is an equivalence of sites (Et/S, ét) =~ lim (Et/S ., ét).

Proof. Without loss of generality, we may assume that the indexing category of the inverse system (S4)q
admits a final object 0. We may replace S,, by the blowup of a finitely generated ideal of definition and
each 8, by its strict transform, and assume that the S, ’s are locally of principal ideal type. The question
being local for the Zariski topology on 8,, we may assume that the formal schemes 8,’s are affine of
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principal ideal type. We set A, = O(8,) and A = O(S), and we employ Notation 1.3.9. Using Corollary
1.4.13, it is enough to show that the morphism of sites

(&), rigét) — lim(&’, ,rigét)
a @

is an equivalence. Corollary 1.3.10 gives an equivalence on the underlying categories, and it remains to
show that the topologies match. For this, we need to show that every rig-€tale cover in £/, can be refined
by the image of a rig-étale cover in 8;\0 for @ small enough. This follows readily from Proposition
1.4.19. ' O

Remark 1.4.21. Keeping the notation of Corollary 1.4.20, we similarly have an equivalence of sites
(Ete"/S, nis) ~ lim, (Et&"/S 4, nis). This is easier to prove: One reduces to the analogous statement for
the small Nisnevich sites of formal schemes and then further to the analogous statement for the small
Nisnevich sites of ordinary schemes using Lemma 1.4.2.

We end this subsection with a short discussion of points in the rigid analytic setting.

Definition 1.4.22. A rigid point s is a rigid analytic space of the form Spf(V)"e, where V is an adic
valuation ring of principal ideal type; compare with [FK 18, Chapter II, Definition 8.2.1]. We also write
s for the unique closed point of |s|. Using Notation 1.1.13, we then have V = «*(s). Also, «(s) is the
fraction field of V, k(s) is the residue field of V and «°(s) is the localisation of V at its height 1 prime
ideal. A morphism of rigid points s’ — s is a morphism of rigid analytic spaces sending the closed
point of |s’| to the closed point of |s|. Said differently, the induced morphism «*(s) — «*(s’) is local.

Remark 1.4.23. A morphism of rigid points 5 — s is said to be algebraic if the complete field x(s)
contains a dense separable extension of x(s). Algebraic rigid points over s are all obtained by the
following recipe. Start with a separable extension L/x(s), and choose a valuation ring V C L such
that V N k(s) = «*(s). By [Bou98, Chapter VI, §8, n° 6, Proposition 6 & Corollary 1] such valuation
rings exist, and they are conjugate under the automorphism group of the extension L/« (s) if the latter
is Galois.) Then define a rigid point 5 by taking «*(5) to be the adic completion of V (considered as
a «*(s)-algebra). By [BGR84, Proposition 3.4.1/6], if L is a separable closure of «(s), then «(5) is
algebraically closed (and not only separably closed).

Definition 1.4.24. Let 5 be a rigid point.

(1) We say that s is nis-geometric if the valuation ring «* (5) is Henselian.
(2) We say that s is ét-geometric (or, simply, geometric) if the field x(5) is algebraically closed.

Remark 1.4.25. Let S be a rigid analytic space.

(1) A point s € S determines a rigid point, which we denote again by s, given by Spf(x*(s))"e.
Moreover, we have an obvious morphism of rigid analytic spaces s — § sending the closed point
of |s| to s € |S].

(2) A morphism of rigid analytic spaces s — S from arigid point s is called a rigid point of S. It factors
uniquely as 5 — s — S, where s € |S| is the image of the closed point of [s|. By abuse of language,
we say that ‘s is the image of s — §’ or that ‘s is over 5. We say that a rigid point s — § of S is
algebraic if the morphism of rigid points 5 — s is algebraic. (See Remark 1.4.23.)

Lemma 1.4.26. Let 8 be a formal scheme and set S = 8.

(1) Given a point s € S, there is a canonical isomorphism

Spf(«* ~ li
p (K (S)) Spf(K"(sl)r{l—>U—>S

where the limit is over factorizations of Spf(«*(s)) — 8 with U affine and such that U"e is an open
neighbourhood of s in S.
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(2) Given an algebraic rigid point's — S, there is a canonical isomorphism

Spf(k*(3)) =~ li
P (K (S)) Spf(K*(El)r)n—fu-)S

where the limit is over factorizations of Spf(«* (5)) — 8 with U affine and rig-étale over S.

Proof. Assertion (1) follows immediately from [FK 18, Chapter II, Proposition 3.2.6] and the definition
of k*(s); see Notation 1.1.13. To prove assertion (2), we may assume that § = Spf(A) is affine and prove
that the A-algebra «* (%) is a filtered colimit of rig-étale adic A-algebras in the category of adic rings.
Let s € S be the image of 5. Using assertion (1), we may write

k*(s) = colim A,
a

in the category of adic rings, where A, are adic A-algebras such that the Spf(A )¢ are open neigh-
bourhoods of s in S = Spf(A)"¢. Applying Corollary 1.3.10 to the inductive system (Ag)q, We see that
every rig-étale k™ (s)-algebra whose zero ideal is saturated is a filtered colimit in the category of adic
rings of rig-étale adic A-algebras. Thus, it is enough to show that «* (i) is a filtered colimit of adic rig-
étale k*(s)-algebras. This follows immediately from Remark 1.4.23 and the following fact. If L/«(s)
is a finite separable extension and R C L is a sub-«*(s)-algebra of finite type with fraction field L,
then R is a rig-étale «* (s)-algebra. (We leave it to the reader to find a presentation of R as in Definition
1.3.3(1).) m]

Construction 1.4.27. Let 7 € {nis, ét}. Let S be a rigid analytic space, and let s € S be a point. We may
construct an algebraic 7-geometric rigid point's — S over s as follows.

(1) (The case T = nis) Let k(5) /x(s) be a separable extension, and denote by k* (s) the Henselisation of
k*(s) at the point Spec(x(s)) — Spec(«*(s)). Then k*(s) is again a valuation ring. (This follows
from [Bou98, Chapter VI, §8, n° 6, Proposition 6].) We denote by «*(5) the adic completion of
K" (s) and set 5 = Spf(«*(5))"&. We have an obvious map 5 — S, which factors through s — .
The map s — § is a nis-geometric rigid point of S.

(2) (The case T = ét) Let k() be a separably closed algebraic extension of x(s). (We do not require this
extension to be separable.) Let ¥ (s) C k(s) be a valuation ring which extends «*(s) C x(s). We
denote by «*(5) the adic completion of k*(s) and set 5 = Spf(k*(5))"€. (As mentioned above, by
[BGR84, Proposition 3.4.1/6], the fraction field x(5) of x*(5) is always algebraically closed.) We
have an obvious map 5 — § which factors through s — S. The map s — S is an étale geometric
rigid point of S.

In the situation of (1) (resp., (2)), given a presheaf I on Ete'/S (resp., Et/S) with values in an co-category
admitting filtered colimits, we set:

F5 = colim F(U),
s—-U->S
where the colimit is over the étale neighbourhoods with good reduction (resp., étale neighbourhoods)
of 5 in S. The object J5 is called the stalk of I at s.

Remark 1.4.28. The functors F +— J5 introduced in Construction 1.4.27 admit a more basic version
for the analytic topology, given by F +— F = colimgey cx F(U), where the colimit is over the open
neighbourhoods of s in S.

Proposition 1.4.29. Let S be a rigid analytic space.

(1) The site (Et&"/S, nis) admits a conservative family of points given by F +— F5, where’s — S run
over the nis-geometric rigid points as in Construction 1.4.27(1).

(2) The site (Et/S, ét) admits a conservative family of points given by F +— Fs, where’s — S run over
the geometric rigid points as in Construction 1.4.27(2).
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Proof. We only treat the second part. By a standard argument, one reduces to prove the following two
assertions.

(1) Every étale cover of a geometric rigid point s splits.
(2) A family (¥; — X); in Et/S is an étale cover if, for every geometric rigid point 5 — S and every
S-morphism s — X, there exists i and an X-morphism s — Y;.

The first assertion follows from Proposition 1.4.19 (and Corollary 1.4.13). The second assertion follows
from Definition 1.4.5. O

Corollary 1.4.30. Let S be a rigid analytic space and U C S a nonempty open subspace. Assume that
U and S are quasi-compact. Then, every étale cover of U can be refined by the base change of an étale
cover of S.

Proof. Fix an étale cover (U; — U); of U with U; quasi-compact and quasi-separated. Given an
algebraic geometric rigid point 5 — S, we consider u = 5 Xg U. This is a quasi-compact open rigid
analytic subspace of 5. Thus, u is either empty or # — U is an algebraic geometric rigid point of U. In
both cases, the morphism u — U factors through U; for some i. Using Corollary 1.4.20 and Lemma
1.4.26, there exists an étale neighbourhood V5 — S of s such that V5 xXg U factors through U;. This
shows that the base change of the étale cover (V5 — S); refines (U; — U); as needed. )

2. Rigid analytic motives

In this section, we recall the construction of rigid analytic motives following [Ayo15] and prove some of
their basic properties. In particular, we prove in Subsection 2.3 that the functor RigSH . (—; A), sending
a rigid analytic space S to the co-category of rigid analytic motives over S, is a 7-sheaf with values in
Pr. An important result obtained in this section is Theorem 2.5.1 asserting that this sheaf transforms
certain limits of rigid analytic spaces into colimits of presentable co-categories. This result plays an
important role at several places in the paper, notably for constructing direct images with compact support
in Subsection 4.3. In Subsection 2.8, we use this result for computing the stalks of RigSH_ (—; A).

2.1. The construction

From now on, we fix a connective commutative ring spectrum A € CAlg(Sp»o) and denote by Mod,
the co-category of A-modules. Connectivity of A is assumed here for convenience. It implies that Modx
admits a t-structure whose heart is the ordinary category of myA-modules. Examples of A include
localisations of the sphere spectrum at various primes and Eilenberg—Mac Lane spectra of ordinary
rings such as Z, Z/n, Q, etc.

Notation 2.1.1. Given an co-category C, we denote by P(C) the co-category of presheaves on € with
values in the co-category 8 of Kan complexes. If C is endowed with a Grothendieck topology 7, we denote
by Shvw (@) the full sub-co-category of P(C) spanned by the 7-(hyper)sheaves. Thus, Shv(C) is the
co-topos associated to the site (€, 7) as in [Lur09, Definition 6.2.2.6] and Shv/ (€) is its hypercompletion
in the sense of [Lur09, §6.5.2].

Notation 2.1.2. Given an co-category C, we denote by PSh(C; A) the co-category of presheaves of A-
modules on C, i.e., contravariant functors from C to Mod, . If € is endowed with a Grothendieck topology
7, we denote by Shv(TA) (C; A) the full sub-co-category of PSh(C; A) spanned by the 7-(hyper)sheaves.
(For the precise meaning, see Definition 2.3.1 below.) We denote by

L, : PSh(C; A) — ShviM (C; A) (8)
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the left adjoint to the obvious inclusion. This functor is called 7-(hyper)sheafification. We also denote by
()" : Shv,(C; A) — Shv(C; A) 9)

the left adjoint to the obvious inclusion. This functor is called hypercompletion.

Remark 2.1.3. The co-category Shv(TA> (C; A) is stable and admits a #-structure whose truncation functors

are denoted by 7>,,, and 7<,, and whose heart is the category of ordinary sheaves of mypA-modules on the
homotopy category of €. An object F € Shng) (C; A) is said to be m-connective (resp., n-coconnective)
if the natural map 75,F — JF (resp., F — 7, F) is an equivalence. As usual, when m = 0 (resp., n = 0)

we say that J is connective (resp., coconnective).
We record the following lemma which we will use at several occasions.

Lemma 2.1.4. Consider two sites (C, 1) and (C',1"), where C and C’ are ordinary categories, and let
F : C — €’ be a functor. Assume the following conditions.

(1) The topologies T and v’ are induced by pretopologies Cov, and Covy in the sense of [SGAIVI,
Exposé II, Définition 1.3].

(2) For X € @, F takes a family in Cov,(X) to a family in Cov (F(X)). Moreover, ifa : U — X is an
arrow which is a member of a family belonging to Cov.(X) and b : V — X a second arrow in C,
we have F(U xx V) = F(U) Xpx) F(V).

Then, the inverse image functors on presheaves induce by sheafification the following functors:
F*oshviV(©) - s (@) and  F*ishvi?Y (€M) — Sy (@ A). (10)

Moreover, if F defines an equivalence of sites F : (€', 7') — (@, ), i.e., induces an equivalence between
the associated ordinary topoi, then the functors (10) are equivalences of co-categories.

Proof. The case of (hyper)sheaves of A-modules follows from the case of (hyper)sheaves of Kan
complexes using, for example, Remark 2.3.3(2) below. To construct F* : Shv(TA)(G) — ShV(T/,\)(G'),
we need to show that F* : P(C) — P(C’) takes a T-(hyper)cover to a 7’-(hyper)cover which follows
immediately from conditions (1) and (2).

It remains to prove the last statement. The case of hypersheaves follows from the case of sheaves.
Therefore, it is enough to show that F* : Shv,(C) — Shv./(€C’) is an equivalence. Since C and €’ are
ordinary categories, the Yoneda functors composed with sheafification factorize through the sub-co-
categories Shv,(C)<o C Shv,(C) and Shv/ (€”)<o C Shv,(C’) of O-truncated objects. By hypothesis,
the functor F* induces an equivalence of ordinary topoi Shv;(C)<p =~ Shv (€’)<o. Thus, there exists a
functor u : ¢’ — Shv.(C) making the triangles

e e —% 5 Shv, (@)
FJ \ \ lp
¢ —— Shv.(@) Shv.(C’)

commutative. Let u : P(C") — Shv,(C) be the left Kan extension of u along the Yoneda embedding
y: € — P(€’). Given X’ € €’ and a covering sieve R’ C y(X’) generated by a family (¥ — X’); in
Cov,/(X’), the induced map u(R’) — uy(X’) = u(X’) is an equivalence. Indeed, R’ is equivalent to
the colimit of the Cech nerve ass9ciated to the family (Y/ — X’);. It follows that u(R’) is equivalent
to the colimit in Shv(€) of the Cech nerve in Shv,(C)<o associated to the family (u(Y;) — u(X"));.
(Here we use that the functor u : ¢’ — Shv,(C)<o preserves representable fiber products.) The family
(u(Y/) — u(X")); is jointly effectively epimorphic since its image by the equivalence Shv.(C)<o =
Shv (€”)<o is jointly effectively epimorphic. (Here we use [Lur09, Proposition 7.2.1.14] which insures
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that effective epimorphisms can be detected after O-truncation.) This proves that u(R’) is equivalent to
u(X’) as needed.

From the above discussion, we deduce from [Lur09, Proposition 5.5.4.20] that u factors uniquely
through the 7’-sheafification L : P(€’) — Shv,/(€’) yielding a functor Shv,(€C") — Shv.(€). That
the latter is a two-sided inverse to F* follows from the above two triangles and the universal property of
the Yoneda functors ¢ — Shv,(€C) and €’ — Shv,(C). O

Below and elsewhere in this paper, ‘monoidal’ always means ‘symmetric monoidal’.

Remark 2.1.5. Recall that Mod, underlies a monoidal co-category Mod}‘f. Applying [Lur09, Proposition
3.1.2.1] to the co-Cartesian fibration Modff — Fin,, we deduce that

Fun((:’oP, Modff) XFun((‘E"’P,Fin*) Fin, — Fin,

defines a monoidal co-category PSh(C; A)® whose underlying co-category is PSh(C; A). By [Lurl7,
Proposition 2.2.1.9], Shv(TA)(G; A) underlies a unique monoidal co-category Shv(TA)(G; A)® such that
the functor (8) lifts to a monoidal functor.

Remark 2.1.6. There is a monoidal functor A ® — : 8% — Modi’ sending a Kan complex to the
associated free A-module. (More precisely, this is the composition of the infinite suspension functor
2 : 8% — 8p® with the change of algebra functor A®— : Sp® — Mod, provided by [Lurl7, Theorem
4.5.3.1].) It induces monoidal functors

P(@)* - PSh(C;A)®  and  ShviV (€)% — Shvi™ (C; A)®.
Composing with the Yoneda functorsy : € —» P(C) and L, oy : C — ShV.(,A) (@), we get functors
A(=) : € = PSh(C; A) and A(-):C— Shv(TA)((‘Z;A).

If C has finite direct products, the above functors lift to monoidal functors from €* to PSh(C; A)® and
ShV(TA) (C; A)®. In particular, the monoidal structure on PSh(€; A) described in Remark 2.1.5 coincides
with the one given by Day convolution according to [Lurl7, Corollary 4.8.1.12 & Remark 4.8.1.13].

Definition 2.1.7.

(1) We denote by Pr (resp., Pr®) the co-category of presentable co-categories and left adjoint (resp.,
right adjoint) functors; see [Lur09, Definition 5.5.3.1]. There is an equivalence PrR =~ (Pr™) (see
[Lur09, Corollary 5.5.3.4]), and both Pr"“ and Pr® are sub-co-categories of CAT,,, the co-category
of (possibly large) co-categories. The co-category Pr' underlies a monoidal co-category Pr™> ® by
[Lurl7, Proposition 4.8.1.15].

(2) We also denote by Prl the co-category of compactly generated co-categories and left adjoint
compact-preserving functors. It is opposite to Prﬁ), the oco-category of compactly generated co-
categories and right adjoint functors which commute with filtered colimits. See [Lur(9, Definition
5.5.7.1, & Notations 5.5.7.5 & 5.5.7.7]. By [Lurl7, Lemma 5.3.2.11], Pr%u underlies a monoidal
oco-category Prlg; ® and the inclusion PrIl:) — Prl lifts to a monoidal functor Prlg; Y

(3) A monoidal co-category M® is said to be presentable (resp., compactly generated) if the underlying
oco-category M is presentable (resp., compactly generated) and the endofunctor A ® — is a left adjoint
functor for all A € M (resp., is a left adjoint compact-preserving functor for all compact A € M).
This is equivalent to say that M® belongs to CAlg(Pr") (resp., CAlg(PrL)).

Remark 2.1.8. The co-categories PSh(C; A) and Shv(TA) (C; A) are presentable (by [Lur(09, Proposition
5.5.3.6 & Remark 5.5.1.6]), and they are respectively generated under colimits by the objects A(X) and
A+ (X), for X € C. In fact, the objects A(X) are compact so that PSh(C; A) is compactly generated.
More is true: The monoidal co-categories PSh(C; A)® and Shv(TA) (C; A)® are presentable, and if C has
finite direct products, PSh(C; A)® is even compactly generated.
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To define the co-category of rigid analytic motives over a rigid analytic space S, we consider the case
where (€, 1) is the big smooth site (RigSm/S, 7) with 7 € {nis, ét}. (See Notation 1.4.9(3).) Before
proceeding to the definition, we make a remark concerning these sites.

Remark 2.1.9. The category RigSm/S is not small, and some care is needed when speaking about
presheaves and 7-(hyper)sheaves on it. In fact, the only problem that one needs to keep in mind is that
the co-category PSh(RigSm/S; A) is not locally small. However, this problem disappears when passing
to the sub-co-category ShV.(,A) (RigSm/S; A). Indeed, it is easy to see that this co-category is equivalent
to Shvg/\) ((RigSm/S8)<?; A), where « is an infinite cardinal and (RigSm/S)<® c RigSm/S is the full
subcategory spanned by those rigid analytic S-spaces that can be covered by < @ opens which are quasi-
compact and quasi-separated. (This uses Lemma 2.1.4.) Clearly, (RigSm/S)<¢ is essentially small and
thus Shv(TA) (RigSm/S; A) is a presentable co-category. The same remark applies to other sites such as
(Et/ S, 1), etc. Below, whenever we need to speak about general presheaves on RigSm/S, Et/ S, etc., we
implicitly fix an infinite cardinal @ and replace these categories by (RigSm/S)<?, (Et/S)<¢, etc.

We will use the following notation.
Notation 2.1.10.

(1) Let X be a formal scheme. We denote by A% the relative n-dimensional affine space given by
Spf(Ox(t1, ..., t,)). By abuse of notation, we also write ‘X x A"’ instead of ‘A’D’C’, although FSch
has no direct products (nor a final object).

(2) Let X be a rigid analytic space. If X admits a formal model X, we set BY = (A’;C)“g. This is
independent of the choice of X, and in general, we may define BY, by gluing along open immersions.
The rigid analytic X-space B, is called the relative n-dimensional ball. By abuse of notation, we
also write ‘X X B"’ instead of ‘BY’, although RigSpc has no direct products (nor a final object).

(3) If X is arigid analytic space, we denote by U} B} the open rigid analytic subspace of B}, which
is locally given by Spf(Ox(t,7')) < Spf(Ox(z)). The rigid analytic X-space U;( is called the
relative unit circle.*

We fix a rigid analytic space S and 7 € {nis, ét}.

Definition 2.1.11. Let RigSHeTff’ % (S; A) be the full sub-co-category of Shv(TA) (RigSm/S; A) spanned
by those objects which are local with respect to the collection of maps of the form A, (B ;() - A (X),
for X € RigSm/S, and their desuspensions. Let

Lz : Shvi™ (RigSm/S; A) — RigSHS™ "V (S; A) (11)

be the left adjoint to the obvious inclusion. This is called the B!-localisation functor. We also set
Lg:, . = LgioL, with L the 7-(hyper)sheafification functor; see equation (8). The functor Ly is called
the (B!, 7)-localisation functor. Given a smooth rigid analytic S-space X, we set M®T (X) = L1 (A (X)).
This is the effective motive of X.

Remark 2.1.12. The defining condition for a 7-(hyper)sheaf of A-modules F to belong to the sub-co-
category RigSHiﬁ’ ) (S; A) is equivalent to the condition that F is B!-invariant in the following sense:
For every X € RigSm/S, the map of A-modules F(X) — F (B;() is an equivalence. Since F is a 7-
(hyper)sheaf, it is enough to ask this condition for X varying in a subcategory € c RigSm/S such that
every object of RigSm/S admits a 7-hypercover by objects in € which is moreover truncated in the
nonhypercomplete case.

Remark 2.1.13. The co-category RigSHiﬁ’ ) (S; A) is stable, and by [Lurl7, Proposition 2.2.1.9], it
underlies a unique monoidal co-category RigSHiff’ (A (85 A)® such that Lg, lifts to a monoidal functor.
Moreover, this monoidal co-category is presentable, i.e., belongs to CAlg(Pr") since we localise with
respect to a small set of morphisms.

4In [Ayo15], the relative unit circle is denoted by 0B ; and in other places in the literature, it is denoted by Tg(.
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Remark 2.1.14. There is another site that one can use for constructing RigSHiﬁ’ ) (S; A), atleast when
S admits a formal model § (e.g., S quasi-compact and quasi-separated). Indeed, by Corollary 1.4.13,
the site (RigSm/S; 1) is equivalent to the site (FRigSm/S8;rig-7), where FRigSm/§ denotes the full
subcategory of FSch/§ whose objects are the rig-smooth formal S-schemes. (See Definition 1.3.13 and
Remark 1.4.14). Using Lemma 2.1.4, we deduce an equivalence of co-categories

Shv"_(FRigSm/$; A) = Shv{™ (RigSm/S; A)

rig-7
and RigSHiﬁ’(A) (S; A) is equivalent to the sub-co-category of Shvr(gf (FRigSm/8; A) spanned by
those objects which are local with respect to the collection of maps Ayjg ~ (A&) — Mg+ (X), with
X € FRigSm/S, and their desuspensions.

Definition 2.1.15. Let Ty (or simply T if S is clear from the context) be the image by L1 of the cofiber
of the split inclusion A;(S) — AT(U;) induced by the unit section. With the notation of [Robl5,
Definition 2.6], we set

RigSH" (5; A)® = RigSH™ Y (8; A)®[TS]. (12)

More precisely, there is a morphism X7 : RigSHiﬂ’ (N (S;N)® — RigSH(TA) (S; A)® in CAlg(Prb),
sending Ts to a ®-invertible object, and which is initial for this property. We denote by QF :
RigSH(TA) (S;A) — RigSHeTff’ ) (S; A) the right adjoint to 3. Given a smooth rigid analytic S-space
X, we set M(X) = =M (X). This is the motive of X.

Definition 2.1.16. Objects of RigSH(TA) (S; A) are called rigid analytic motives over S. We will denote
by A (or Ag if we need to be more precise) the monoidal unit of RigSH(TA) (S;A). For any n € N, we
denote by A(n) the image of T?”[—n] by X%, and by A(—n) the ®-inverse of A(n). For n € Z, we
denote by M +— M (n) the Tate twist given by tensoring with A(n).

Remark 2.1.17. The object T is symmetric in the sense of [Rob 15, Definition 2.16]. (See, for example,
[Jar0O, Lemma 3.13] whose proof extends immediately to the rigid analytic setting.) By [Robl5,
Corollary 2.22], it follows that the co-category RigSH(TA) (S; A) underlying equation (12) is equivalent
to the colimit in Pr" of the N-diagram whose transition maps are given by tensoring with Ts. Also, by
[Robl5, Corollary 2.23], the monoidal co-category (12) is stable.

Remark 2.1.18. When A is the Eilenberg-Mac Lane spectrum associated to an ordinary ring, also
denoted by A, the co-category RigSH(Teﬁ’ A (S; A) is more commonly denoted by RigDA(Teﬂ’ n (S; A).
Also, when 7 is the Nisnevich topology, we sometimes drop the subscript ‘nis’.

Remark 2.1.19. There is a more traditional description of the co-category RigSH(Teﬁ’ ~ (S5 A) using the
language of model categories. This is the approach taken in [Ayol5, §1.4.2].

Assume that A is given as a symmetric S'-spectrum, and denote by Mod, (A) the simplicial category
of A-modules which we endow with the model structure described in [HSS00, Corollary 5.4.2]. Note
that the co-category Mod, is equivalent to the simplicial nerve of the full subcategory of Moda (A)
consisting of cofibrant-fibrant objects. Let PShp (RigSm/S; A) be the simplicial category whose objects
are the presheaves on RigSm/S with values in Mod, (A), which we endow with its projective global
model structure. The projective (B!, 7)-local structure on PShy (RigSm/S; A), also known as the motivic
model structure, is obtained from the latter via the Bousfield localization with respect to the union of
the following classes of maps:

(1) Morphisms of presheaves inducing isomorphisms on the 7-sheaves associated to their homotopy
presheaves;

(2) Morphisms of the form A(IBB;( [n] — A(X)[n] induced by the canonical projection, for X €
RigSm/S and n € Z.
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The co-category RigSH‘;ﬁ’ "(S; A) is equivalent to the simplicial nerve of the full simplicial subcategory
of PSha (RigSm/S; A) consisting of motivically cofibrant-fibrant objects. This follows from [Lur09,
Propositions 4.2.4.4 & A.3.7.8].

To obtain the T-stable version, we form the category Spt; (PSha(RigSm/S;A)) of T-spectra of
presheaves of A-modules on RigSm/S. (Here T is any cofibrant replacement of A(Ug) /A(S).) The
(B!, 7)-local model structure induces the stable (B!, 7)-local model structure on T-spectra, which is
also known as the motivic model structure. The co-category RigSH” (S; A) is equivalent to the simplicial
nerve of the full simplicial subcategory of Spt;- (PSha (RigSm/S; A)) consisting of motivically cofibrant-
fibrant objects. This follows from [Rob15, Theorem 2.26].

The above discussion can be adapted to the nonhypercomplete case. One only needs to replace the
class of maps in (1) above by a smaller one, namely the class of maps of the form hocolim(,,} ¢ o A(Y,,) —
A(Y-1), where Y, is a truncated T-hypercover of Y_; € RigSm/S. In both cases, the weak equivalences
of the (stable) (B!, 7)-local model structure are called the (stable) (B!, 7)-local equivalences.

Lemma 2.1.20. The monoidal co-category RigSH(Teﬁ’ A (8; A)® is presentable, and its underlying oo-
category is generated under colimits, and up to desuspension and negative Tate twists when applicable,
by the motives M%) (X) with X € RigSm/S quasi-compact and quasi-separated.

Proof. That the monoidal co-category of the statement is presentable was mentioned above. The claim

about the generators follows from Remark 2.1.8 in the effective case. In the T-stable case, we then use
the universal property of ®-inversion given by [Rob15, Proposition 2.9]. O

Proposition 2.1.21. The assignment S — RigSH(TEff’ A (8; A)® extends naturally into a functor
RigSH ™" (—; A)® : RigSpc® — CAlg(Prb). (13)

Proof. Wereferto [Robl14, §9.1] for the construction of an analogous functor in the algebraic setting. O

Notation 2.1.22. Let f : Y — X be a morphism of rigid analytic spaces. The image of f by the functor
(13) is the inverse image functor

£*: RigSHE™ Y (X; A) — RigSH™ " (v; A)

which has the structure of a monoidal functor. Its right adjoint f; is the direct image functor. It has the
structure of a right-lax monoidal functor. (See Lemma 3.4.1 below.)

2.2. Previously available functoriality

We gather here part of what is known about the functor § +— RigSH(Teff’ n (S; A) introduced in Subsection
2.1. The results that we discuss here were obtained in [Ayol5, §1.4] under the assumption that S is of
finite type over a non-Archimedean field. However, the proofs apply also to the general case with very
little modification.

Proposition 2.2.1. Let f : Y — X be a smooth morphism of rigid analytic spaces.

(1) The functor f*, as in Notation 2.1.22, admits a left adjoint
fi - RigSHE™ M (v; A) — RigSHE™ Y (x; A)
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sending the motive of a smooth rigid analytic Y-space V to the motive of V considered as a smooth
rigid analytic X-space in the obvious way.
(2) (Smooth projection formula) The canonical map

fﬁ(f*M@)N) — M®fﬁN

is an equivalence for all M € RigSH(Teﬁ’ n (X;A)and N € RigSH(Teﬁ’ N (Y5 A).
(3) (Smooth base change) Let g : X' — X be a morphism of rigid analytic spaces and form a Cartesian
square

A

Ll

X’LX.

The natural transformations fﬁ’ og" — g'o fyand f* o g. — g, o f’, between functors from
RigSH(Teﬁ’ A (Y;A) to RigSngﬁ’ ~ (X’; A) and back, are equivalences.
Proof. The functor f* : RigSm/X — RigSm/Y admits a left adjoint fy sending a smooth rigid analytic
Y-space V to V considered as a smooth rigid analytic X-space. The adjunction (fy, f*) induces an
adjunction between categories of motives. This is discussed in [Ayol5, Théorémes 1.4.13 & 1.4.16]
using the language of model categories. For the second assertion, we refer to the proof of [Ayo(07b,

Proposition 4.5.31]. For the third assertion, we refer to the proof of [Ayo15, Lemme 1.4.32]. Both proofs
are formal and extend readily to the context we are considering. O

Corollary 2.2.2. Let j : U — X be an open immersion of rigid analytic spaces. Then the functors
Ju» o RigSHE™ M (U; A) — RigSHE™ Y (X; A)
are fully faithful.

Proof. This follows from Proposition 2.2.1(3) with f and g equal to j. O

Proposition 2.2.3. Let i : Z — X be a closed immersion of rigid analytic spaces (as in Definition
[.1.14) and j : U — X the complementary open immersion (i.e., such that |U| = |X| \ |Z]).

(1) The functor i, : RigSH™™ (Z; A) — RigSH™ " (X; A) is fully faithful.
(2) (Localization) The counit of the adjunction (jy, j*) and the unit of the adjunction (i*,i.) form a
cofiber sequence

Jgi* —id — id” (14)

of endofunctors OfRigSH(Teff’ A (X; A). In particular, the pair (i*, j*) is conservative.
(3) (Closed projection formula) The canonical map

M®i.N - i.(i"M ® N) (15)
. . . (eff, A) . . (eff, A) A
is an equivalence for all M € RigSH; (X;A) and N € RigSH; (Z; A\).

https://doi.org/10.1017/fms.2022.55 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.55

30 Joseph Ayoub et al.

(4) (Closed base change) Let g : X" — X be a morphism of rigid analytic spaces and form a Cartesian
square

-

x5 . x.

The natural transformation g* o i, — i, o g’*, between functors from RigSH(Teﬁ’ n (Z;A) 1o

RigSH(Teff’ A (X'; N), is an equivalence. If moreover g is smooth, then the natural transformation
ggoi, —i.o gé,fmm RigSH.(,.eff’ A (Z"; ) to RigSH(Teﬁ’ A (X A), is an equivalence.

Proof. Assertion (2) implies all the others. Indeed, applying i* to the cofiber sequence (14) and using
that i* jy ~ 0 (which follows from Proposition 2.2.1(3)), we deduce that i*i.i* — i* is an equivalence.
Assertion (1) follows then from Lemma 2.2.5 below. We may check that the functor (15) is an equivalence
after applying i* and j*. Assertion (3) follows then by using that j*i, ~ O (by Proposition 2.2.1(2)) and
i*i, ~ id (by assertion (1)). Similarly, to prove assertion (4) we use that the pairs (i*, j*) and (i"*, j*) are

%)

conservative (with j’ : U’ — X’ the base change of j) and the equivalences j*i. ~ 0, j"*i’ ~ 0, ", ~id
and i{"*i; ~ id and smooth base change as in Proposition 2.2.1(3) for the second natural transformation.

We now discuss the proof of assertion (2). When X is of finite type over a non-Archimedean field,
assertion (2) can be found in [Ayo15, §1.4.3]. (See [Ayo15, Théoréme 1.4.20] for the effective case and
the proof of [Ayo15, Corollaire 1.4.28] for the T-stable case.) We claim that the proofs of loc. cit. extend
to general rigid analytic spaces.

The key step is to show that [Ayol5, Théoreme 1.4.20] is still valid for general rigid analytic
spaces, i.e., that assertion (2) holds true in the effective case. This is the statement that for any & in

RigSHS™ W (X; A), the square

itF—F (16)

|

0 ———ii'T

is co-Cartesian in RigSHCTff’ ) (X;A). Using Lemma 2.1.20 and Lemma 2.2.5 below, we may assume
that J' = L1 ,A(X’) with X" € RigSm/X. (See Definition 2.1.11.) Using Lemma 2.2.4 below, we have
an equivalence

i Lt (A(X") = Lt .M (X7),
where X/, = X’ xx Z and t the topology on RigSpc generated by one family, namely the empty family

considered as a cover of the empty rigid analytic space. Thus, it is enough to show that L . transforms
the square

At@ (X[/]) — At@ (X,)

L

0 ——— iy (X))
into a co-Cartesian one. Using the analogues of [Ayo(07b, Corollaire 4.5.40 & Lemme 4.5.41], we

reduce to showing that [Ayol5, Proposition 1.4.21] is valid for general rigid analytic spaces. More
precisely, given a partial section s : Z — X’ defined over Z, we need to show that the morphism

https://doi.org/10.1017/fms.2022.55 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.55

Forum of Mathematics, Sigma 31

Tx'. s ® A — {*}®Aisa (B!, r)-equivalence (i.e., becomes an equivalence after applying Lg: ,). Here
Tx_ s is the presheaf of sets on RigSm/X given by

Ty o (P) = Homy (P, X”) XHomy (Pxxz,x7) 1*} if PXx Z # 0,
X'ss {x} if Pxx Z=0.

Arguing as in the first and second steps of the proof of [Ayol5, Proposition 1.4.21] one proves that
the problem is local on X and around s(Z) for the analytic topology. (In loc. cit., we only consider
hypersheaves, but the reader can easily check that hypercompletion is not used in this reduction.) Using
Proposition 1.3.16, it is thus enough to treat the case X’ = B and s the zero section restricted to Z.
In this case, we may use an explicit homotopy to conclude as in the third step of the proof of [AyoO7b,
Proposition 4.5.42].

Now that assertion (2) is proven in the effective case, we explain how it extends to the T-stable case.
Since assertion (2) in the effective case implies assertion (3) in the effective case, the functor

i : RigSH™ M (7: A) — RigSH™ ™ (X A)

commutes with tensoring with T, i.e., there is an equivalence of functors Ty ® i, (—) =~ i.(Tz ® —). (See
Definition 2.1.15.) Using Remark 2.1.17 and the fact that i, belongs to Pr™ (by Lemma 2.2.5 below), we
deduce that i, commutes with X7, i.e., there is an equivalence L7’ o i, ~ i, o X7. Therefore, applying
27 to the co-Cartesian squares (16), we deduce that

Jgi'M — M

|

0 ——iJi'M

is co-Cartesian for any M in the image of X°(—) up to a twist. Using Lemma 2.1.20 and Lemma 2.2.5,
we deduce that the above square is co-Cartesian for any M € RigSH(TA) (X5 A). O

Lemma 2.2.4. Leti : Z — X be a closed immersion of rigid analytic spaces. The functor
i, : Shvy, (RigSm/Z; A) — Shv,, (RigSm/X; A) 17

commutes with T-(hyper)shedfification and the (B!, T)-localisation functor.

Proof. This is a generalisation of [Ayol5, Lemma 1.4.18]. For the proof of loc. cit. to extend to our
context, we need to show the following property. Given a smooth rigid analytic X-space X’ such that
X/, = X’ Xx Z is nonempty, every t-cover of X/, can be refined by the inverse image of a r-cover of
X’. To prove this, we may assume that X’ = X. The question is local on X. Thus, we may assume that
X = Spf(A)"¢, with A an adic ring of principal ideal type, and Z = Spf(B)"¢ with B a quotient of A by a
saturated closed ideal 1. Let 7 be a generator of an ideal of definition of A. Then B is the filtered colimit
in the category of adic rings of C; y = A(J/x™), where N € N and J C I is a finitely generated ideal.
SetY; n = Spf(C‘[’ N)rig.

By Corollary 1.4.20 and Remark 1.4.21, every T-cover (V; — Z); can be refined by the restriction to
Z of at-cover (U; — Y, n); for well chosen J and N. We get a T-cover of X with the required property
by adding to the family (U; — X); the open inclusion X \ Z — X. O

Lemma 2.2.5. Leti : Z — X be a closed immersion of rigid analytic spaces.

(1) The functori, : RigSH(fff’ N (Z;N) — RigSH(Teff’ A (X; A) commutes with colimits. Thus, it admits
a right adjoint which we denote by i'.
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(2) The image of the functor i* : RigSH(Teff’ ~ (X;A) — RigSH(fff’ A (Z; A) generates the co-category
RigSH™ " (Z; A) by colimits.

Proof. In the effective case, assertion (1) follows from Lemma 2.2.4. Indeed, for a rigid analytic space S,
the colimit of a diagram in RigSH(Teff’ A (83 A) is computed by applying Lg: . to the colimit of the same
diagram in Shv,, (RigSm/S; A). So, it is enough to show that the functor (17) commutes with colimits,
which is obvious. The passage from the effective case to the T-stable case follows from Remark 2.1.17
and the commutation Ty ® i,.(—) =~ i.(Tz ® —). (This relies on assertion (2) of Proposition 2.2.3, but
only in the effective case, so there is no vicious circle.)

We now prove assertion (2). By Lemma 2.1.20, it is enough to show that the motive M(¢®) (V) of a
smooth rigid analytic Z-space V is a colimit of objects in the image of i*. The problem is local on X and
V, so we may assume that X = Spf(A)"€, Z = Spf(B)"€ and V = Spf(F)"¢, where A is an adic ring of
principal ideal type, B a quotient of A by a saturated closed ideal and F' € &/, (s) with s = (s1,...,85m)
a system of coordinates. (For the definition of the category £, (s)? S€€ Notation 1.3.9.) Writing B as the
colimit of C;, n as in the proof of Lemma 2.2.4, we may apply Corollary 1.3.10 to find E € €.

J.N(s)’

for some J and N, such that E @cj’N B/(0)** ~ F. Thus, U = Spf(E)"® is a smooth rigid analytic
X-space such U xx Z =~ V, and we have i*M 0 (/) ~ M) (V) as needed. O

One of the aims of this paper is to define the full six-functor formalism for rigid analytic motives.
We have seen above that the functors f*, fi, fy, ® and Hom can be defined with little effort. We now

state what was known so far concerning the exceptional functors f; and f' following [Ayol5, §1.4.4]
(see also [BV19, Theorem 2.9]).

Remark 2.2.6. Let A be an adic ring, I C A an ideal of definition, and U = Spec(A) ~\ Spec(A/I).
Recall from Construction 1.1.15 that there exists an analytification functor

(=)* : Sch'™/U — RigSpc/U™ (13)

from the category Sch'™/U, of U-schemes which are locally of finite type, to the category of rigid
analytic U®"-spaces. (Note that U*" = Spf(A)"¢.) This functor preserves étale and smooth morphisms,
closed immersions and complementary open immersions, as well as proper morphisms.

The following result follows immediately from Propositions 2.2.1 and 2.2.3 and the construction.

Proposition 2.2.7. Keep the notation as in Remark 2.2.6. The contravariant functor
X RigSHY (X" A), [ [

from Sch'™/U to Pr" is a stable homotopical functor in the sense that it satisfies the co-categorical
versions of the properties (1)—(6) listed in [AyoO7a, §1.4.1].

Remark 2.2.8. The oo-categorical versions of the properties (1)—(6) listed in [Ayo07a, §1.4.1] can be
checked after passing to the homotopy categories. Thus, we may as well reformulate Proposition 2.2.7
by saying that the functor from Sch'™/U to the 2-category of triangulated categories, sending X to the
homotopy category associated to RigSH(TA) (X*; A), is a stable homotopical functor in the sense of
[Ayo0O7a, Définition 1.4.1].

Proposition 2.2.7 gives access to the results developed in [Ayo07a, Ayo07b, Chapitres 1-3] yielding
a limited six-functor formalism for rigid analytic motives. We will not list explicitly all the properties
that form this formalism since a full six-functor formalism will be obtained later in Section 4. We
content ourselves with the following preliminary statement which we actually need in establishing the
full six-functor formalism for rigid analytic motives.
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Corollary 2.2.9. Keep the notation as in Remark 2.2.6. Given a morphism f : Y — X between quasi-
projective U-schemes, there is an adjunction

£ RigSHYY (r™; A) 2 RigSHYY (X A) : f*,

Moreover, the following properties are satisfied.

(1) The assignments f + f* and f — 2" are compatible with composition. >
(2) Given a Cartesian square of quasi-projective U-schemes

’

y 5 .y

I )

x 5 .x,

there is an equivalence g™ * o fi" = f/* o g’
(3) There is a natural transformation f*" — f" which is an equivalence if f'is projective.
(4) Iffis smooth, there are equivalences f*' ~ Th(Qf) o f** and fi" ~ fﬁa“ o Th_l(Qf), where
Th(Qy ) and Th! (Qy) are the Thom equivalences associated to Q¢ as in [AyoO7a, §1.5.3].
Proof. This follows from Proposition 2.2.7 and [Ayo07a, Scholie 1.4.2]. O

Remark 2.2.10. Thom equivalences can be defined for any Ox-module M which is locally free of finite
rank on a rigid analytic space X. Indeed, M determines a vector bundle p : M — X whose fiber at a point
x € X is given by Spec(«(x) [M,])*". We set Th(M) = pys. and Th™ ' (M) = s'p*, where s : X — M is
the zero section. If M is free of rank m, then Th(M) = (=)(m)[2m] and Th™' (M) = (=) (—m)[-2m].
That said, we may write ‘Th(Qyw=)’ instead of ‘Th(Qf)’ in Corollary 2.2.9(4). (If 4 is a smooth
morphism of rigid analytic spaces, there is an associated O-module €2;, which is locally free of finite
rank. It can be defined locally as the cokernel of the Jacobian matrix.)

Definition 2.2.11.

(1) If S is a rigid analytic space, we denote by P the relative n-dimensional projective space over S. If
S = Spf(A)"e, for an adic ring A, then P} = (ngf ( A))rig, and for general S, P is defined by gluing.
If A and U are as in Remark 2.2.6, we also have P?,,, ~ (PZ)“.

(2) Let f : Y — X be a morphism of rigid analytic spaces. We say that f is locally projective if, locally
on X, f can be factored as a closed immersion followed by a projection of the form P}, — X.

For later use, we also record the following statement.
Proposition 2.2.12. Let f : Y — X be a locally projective morphism of rigid analytic spaces.

(1) (Projective projection formula) The canonical map M ® f.N — f.(f*M ® N) is an equivalence
forall M € RigSH™ (X; A) and N € RigSHV (Y; A).

(2) (Projective extended base change) Let g © X’ — X be a morphism of rigid analytic spaces and form
a Cartesian square

v -5 .y
lfl Jf
, &

x5 . x.

SHere we only claim the compatibility with composition up to noncoherent homotopies. A more structured version of this will
be obtained later in a more general situation; see Theorem 4.4.2.
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The natural transformation g* o f. — f! o g’*, between functors from RigSH(TA)(Y;A) to
RigSHg.A) (X’; A), is an equivalence. If moreover g is smooth, then the natural transformation
ggofi = feo gt’t, from RigSH(TA) (Y';A) to RigSH(TA) (X; A), is an equivalence.

Proof. If f = fi o f», then the assertions for f follow from their analogues for f; and f,. Also, the
assertions can be checked locally on X. Thus, it is enough to treat the case of a closed immersion
i :Z — X and the case of p : P§, — X. The case of a closed immersion follows from Proposition
2.2.3. For p : P% — X, we use Corollary 2.2.9 which provides us with a canonical equivalence

P« = py=pgo Th™! (L,). The result follows then from Proposition 2.2.1. O

We now go back to the notation introduced in Remark 2.2.6. Given a U-scheme X which is locally
of finite type, the analytification functor (18) induces a premorphism of sites

An : (RigSm/X*, 1) — (Sm/X, 7). (19)

(Indeed, the analytification of an étale cover is an étale cover, and the analytification of a Nisnevich
cover can be refined by an open cover; see [Ayol5, Théoreme 1.2.39] whose proof can be adapted to
our context.) By the functoriality of the construction of the co-categories of motives, the functor (19)
induces a functor

An* : SHET M (X: A) — RigSHE™ M (X2, A). (20)

In [Ayo15], this functor is denoted by Rig™.
Proposition 2.2.13. The functors (20) are part of a morphism of CAlg(Pr")-valued presheaves

SHE™ M (—: A)® — RigSH ™" ((-)=; A)® Q1)

on Sch™/U. In particular, the functors An* are monoidal and commute with the inverse image functors.
Moreover, if f is a smooth morphism in Sch'™ /U, the natural transformation

fﬁan o An" — An” o fy
is an equivalence.

Proof. One argues as in [Rob14, §9.1] for the first assertion. The second assertion is clear. |

Proposition 2.2.14. Let f : Y — X be a proper morphism in Sch'™ /U. Then, the natural transformation
An*o f, = f¥ o An",

between functors from SH(TA) (Y;A) to RigSH(TA) (X, A), is invertible.

Proof. We split the proof into two steps.

Step 1

Here we assume that f is projective. It is enough to prove the claim when f is a closed immersion
and when f is the projection P}, — X. In the first case, one uses Proposition 2.2.3 and its algebraic

analogue. In the second case, one uses Corollary 2.2.9 and its algebraic analogue to reduce to show that
fﬁa“ o An* = An”" o f which holds by Proposition 2.2.13.

Step 2
Here we deal with the general case. We may assume that X is quasi-compact and quasi-separated. Using
Proposition 2.2.13, we reduce easily to show that

AN o f.ojy = £ 0 ji" 0 A’
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is an equivalence for every open immersion j : V — Y, with V affine. By the refined version of Chow’s
lemma given in [Con07, Corollary 2.6], there is a blowup e : Y’ — Y, with centre disjoint from V such
that f’ : Y’ — X is projective. Let j' : V — Y’ be the obvious inclusion. by Proposition 2.2.12(2) and
its algebraic version, we have equivalences e, o jé ~ jyand i o jéa" o~ j;". Thus, it is enough to prove
the proposition for f’ = f o e. Since this morphism is projective, we may conclude by the first step. O

Remark 2.2.15. The method used in the second step of the proof of Proposition 2.2.14 will be used again
in the second part of the proof of Proposition 4.1.1 below to deduce the proper base change theorem for
SH(TA) (=; A) from its special case for projective morphisms which is covered by [Ayo07a, Corollaire
1.7.18]. (For a slightly different method using the usual version of Chow’s lemma but requiring the
schemes to be noetherian, see the proof of [CD19, Proposition 2.3.11(2)].) Similarly, this method can
be used to generalise Proposition 2.2.12 to the case where f is locally the analytification of a proper
morphism of schemes. However, our aim is to prove a more substantial generalisation of that proposition
which cannot be reached using this method. This will be achieved in Theorem 4.1.4 below.

2.3. Descent

In this subsection, we prove that the functor S — RigSH(TEH’ ~) (S;A), f — f*, whose existence is
claimed in Proposition 2.1.21, admits (hyper)descent for the topology 7. This can be considered as a
folklore theorem, but we reproduce the proof here for completeness. For a comparable result in the
algebraic setting, see [Hoy 17, Proposition 4.8].

For later use, we recall the precise definition of a (hyper)sheaf valued in a general co-category.
(Compare with [Drel8, Definition 2.1].)

Definition 2.3.1. Let (C,7) be a site, and let V be an oo-category admitting all limits. A functor
F : C°° — Vs called a 7-(hyper)sheaf (or is said to satisfy 7-(hyper)descent) if its right Kan extension
F : P(C)°" — V, along the Yoneda embedding, factors through the opposite of the localisation functor
L;:PC) — ShV(T/\> (€). This is equivalent to the condition that F induces an equivalence

F(X.)) — [li]mA F(X,) (22)

for every effective T-hypercover X,. (An effective 7-hypercover X, is an augmented simplicial object

of P(€) such that L. (X,) is an effective hypercovering of the co-topos ShV(T/\)(G)/LTX_1 in the sense

of [Lur09, Definition 6.5.3.2].) We denote by Shng)((?; V) the full sub-oco-category of PSh(C; V) =
Fun(C°P, V) spanned by 7-(hyper)sheaves. When V is the co-category 8 of spaces, we get back the
00-tOpos Shv(TA) (©).

We gather a few facts about (hyper)sheaves with values in general co-categories. We refer the reader
to [Drel8, §2] for proofs and more details.

Remark 2.3.2. Keep the notation as in Definition 2.3.1.

(1) In the hypercomplete case, every T-hypercover is effective. Therefore, for F to be a 7-hypersheaf,
the equivalence (22) needs to hold for every 7-hypercover, but see Remark 2.3.3(3) below.

(2) In the nonhypercomplete case, for F' to be a 7-sheaf, it is enough that the equivalence (22) holds for
X, the Cech nerve associated to a T-cover in C. It then holds for any truncated 7-hypercover. See
[Lur09, Definition 6.2.2.6 & Lemma 6.5.3.9].

Remark 2.3.3. Keep the notation as in Definition 2.3.1.

(1) Let ¢ : V — 'V’ be a limit-preserving functor between co-categories admitting all limits. Then the
induced functor @ : PSh(C; V) — PSh(C;V’) preserves 7-(hyper)sheaves. If moreover ¢ detects
limits, then @ detects 7-(hyper)sheaves.
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(2) Assume that V is presentable. Then the co-category ShV(A) (C;V) is an accessible left-exact local-
ization of PSh(C; V). In particular, it is also presentable. We denote by

L. : PSh(C;V) — Shv{V(€; V)

the 7-(hyper)sheafification functor defined as the left adjoint to the obvious inclusion. (This was
introduced in Notation 2.1.2 for V = Mod,.) With respect to the monoidal structure on Pl of
[Lurl7, §4.8.1], we have Shv<A)(€;\7) ~ Shv(TA)((?) ® V; see [Drel8, Proposition 2.4(1)] whose
proof is also valid in the nonhypercomplete case.

(3) If (G, ) is a Verdier site (in the sense of [DHI04, Definition 9.1]) satisfying the assumptions (1-3)
of [DHIO4, §10], the condition of F being a 7-(hyper)sheaf can be expressed without recourse
to its right Kan extension F. More precisely, F is a 7-(hyper)sheaf if F transforms representable
coproducts in € into products in V and if for every internal T-hypercover X, (in the sense of [DHI04,
Definition 10.1]) which is effective, F' induces an equivalence

F(X_) > lim F(X,).
[n]eA

(As explained in Remark 2.3.2, in the hypercomplete case, effectivity is an empty condition, and in
the nonhypercomplete case, we may replace it with the condition that X, is truncated or better with
the condition that X, is the Cech nerve of a basal morphism Xq — X_; which is a 7-cover.) This is
proven in [Drel8, Proposition 2.7] in the hypercomplete case and is clear in the nonhypercomplete
case. It applies to the sites we consider in this paper, such as the big smooth sites of Notation 1.4.9.

The main result of this subsection is the following.

Theorem 2.3.4. Let T € {nis, ét} be a topology on rigid analytic spaces. The contravariant functor
S+ RigSH™ "V (S:A), f = f°

defines a t-(hyper)sheaf on RigSpc valued in Pr".

Remark 2.3.5. The forgetful functor CAlg(Pr") — Pr" being limit-preserving and conservative
(by [Lurl7, Corollary 3.2.2.5 & Lemma 3.2.2.6]), Theorem 2.3.4 and Remark 2.3.3(1) imply that
RigSH(fﬁr’ A (—; A)® is also a 7-(hyper)sheaf valued in CAlg(Pr").

Before we can give the proof of Theorem 2.3.4, we need a digression about general (hyper)sheaves
on general sites. Let C be a small co-category and X an object of €. Composition with the obvious
projection jx : €;x — € induces a functor j} : P(C) — P(C,x) which preserves limits and colimits.
We denote by jx, 1 the left adjoint of j} and jx, . its right adjoint. A topology 7 on C induces a topology
on C,x which we also denote by 7. It is easy to see that j3 and jx,. preserve 7-(hyper)sheaves. (For
jx, «» note that modulo the equivalence P(C/x) = P(C),y(x), the functor jx . takes a presheaf F on C,x
to the presheaf U +— Map?(e)/y(x) (y(U) x y(X), F).) We get in this way an adjunction

ix 1 ShviY (€) 2 ShviY (C/x) < jx .
where ji, commutes with all limits and colimits. In particular, j; admits a left adjoint (on the level of

(hyper)sheaves) which we denote by j% x.1- Itis related to jx, by an equivalence ji | oLy ~L; o Gx -
The following lemma is well-known. We include a proof for completeness.

Lemma 2.3.6. Let (C, 7) be a site and X € C. The functor j3, | factors through an equivalence

ex : ShviV(€/x) = Shvi™ (@)L, y(x)-
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Proof. The functor j% , : Shvi’” (€/x) — Shv{")(€) sends the final object L,y(idx) of Shv\" (€/x)
to Lry(X). This gives the functor ex. By construction, we have a commutative square

PC/X) —— P @)y,

lL, lu,

Shvi?M (€/x) —X— shvi™ (C)/.yx)-

By [Lur09, Corollary 5.1.6.12], € is an equivalence. Note that L/, is essentially surjective on objects.
Indeed, given a morphism of 7-(hyper)sheaves F' — L,y(X), there is an equivalence F' =~ L, (F Xy _y(x)
y(X)) since L; is exact and idempotent. To finish the proof, it will suffice to show that ex is fully faithful.
Let fx be a right adjoint to ex and f} a right adjoint to e},. We know that the unit id — f}, o e} is an
equivalence, and we need to prove that the unit id — fx o ey is an equivalence. By [Lur09, Proposition
5.2.5.1], fx sends a map F — L;y(X) to the fiber product j3 F Xjs Ly (X) {*} and f}, sends a map
F’ — y(X) to the fiber product j3 F’ Xj: y(x) {x}. Since (hyper)sheafification is exact, we deduce that
the natural transformation L. o f{, — fx o L’ is an equivalence. Using the commutative square

L,—— fyoeyxoL,

§ i

’ ’ ~ ’ ’
Lyofyoey ——1fy oL, o€k,

it follows that the natural transformation L, — fx o ex o L; is an equivalence, which is enough to
conclude since L; is essentially surjective. O

We denote by Top" the co-category of co-topoi and exact left adjoint functors, as defined in [Lur09,
Definition 6.3.1.5].

Proposition 2.3.7. Let (C, T) be a site. The functor ShV(TA) (€)m) : CP — Top", taking an object X of
C to the co-topos ShV.(,A) (C/x) and a morphism fin C to thefunctorj}, is a T-(hyper)sheaf.

Proof. Every co-topos X determines a Top"-valued sheaf on itself: By [LLur09, Proposition 6.3.5.14],
the functor y : X°° — Top", sending X € X to X/x, preserves limits. Take X = ShV(TA)(G). Since
L. : P(C) — X preserves colimits, we deduce that y o L, : P(€)°P — Top" preserves limits. It follows

that the functor y o L is a right Kan extension of y o Ly oy : €% — Top". Since y o L, clearly
factors through ShvgA> (@), the functor y oL oy is a 7-(hyper)sheaf. Now, by Lemma 2.3.6, the functor

x o L. oy isequivalent to the one sending X € C to ShviM (e /X)- O

Corollary 2.3.8. Let (C, 1) be a site and 'V a presentable co-category. The functor ShV(TA) (Cj3 V) :
@ — Prl, taking an object X of C to the co-category ShV(TA) (€/x3; V) and a morphism fin C to the
functorj’}, is a T-(hyper)sheaf.

Proof. By Proposition 2.3.7, the result holds when V is the co-category of spaces 8, and we want to
reduce to this case. We denote by X{(—; V) : €°P — Prl the functor sending X € C to Shv(TA) (C/x;V).By

Remark 2.3.3, we have an equivalence of functors X(—;8) ® V — X(—; V), where the tensor product is
taken in Pr" (see [Lur17, §4.8.1]). Moreover, for any f : Y — XinC,the functorj} : X(X;8) —» X(Y;8)
commutes with all limits. It follows from Lemma 2.3.9 below that there is an equivalence of functors

X(=;8) ® V =~ Fun™ (VP X (-;8)).
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Thus, it is enough to show that Fun'™ (V°P, X((—; 8)) : €% — CAT,, is a 7-(hyper)sheaf. This follows
from Proposition 2.3.7 since the endofunctor Fun™(V°P, —) of CAT,, preserves limits. ]

Lemma 2.3.9. Let Pr'R be the wide sub-co-category of Pr*, where morphisms are the limit-preserving
left adjoints. Let D be a presentable co-category. Then the functor D ® — : Pr*R — CAT.., obtained by
restriction from the tensor product of Pr, is equivalent to the functor

Fun'™(D; -) : Pr'R — CAT.,,

where Fun'™(—, —) c Fun(—, —) indicates the full sub-co-category of limit-preserving functors.

Proof. The endofunctor D ® — of Pr"“ induces an endofunctor of PrR given by the composition of
R ~ plyop D& op =, pR
PR 5 (PP — (PP S PR,

By [Lurl7, Proposition 4.8.1.17], this coincides with the endofunctor Fun"™(D°P, —) of PrR. It follows
that the endofunctor D ® — of Pr" is given by the composition of

'm(Do

~ i P ~
prt S (PrR)op fun = (Pr?)%P = prl.

It remains to show that the composition of

~ Funlim (rDop’_)
PR — prt 5 (PrR)oP

(Pr®)°P 5 Prl — CAT,,

is also given by Fun"™(D°, —). On objects, this is clear. On morphisms, this is also true by the

following observation: if F : & — &’ is in Pr'R with right adjoint G, then Fun"™(D°P, F) is left adjoint

to Fun'"™(D°P, G). To address higher coherences, we employ the formalism of Cartesian fibrations.
Let S be a simplicial set and p : M — S a co-Cartesian fibration classified by amap [ : § — Pr'R,

Then p is also a Cartesian fibration which is classified by a map r : § — (PrR)° equivalent to the

composition of

sL P 5 (PrR)%P.

Moreover, p-Cartesian and p-co-Cartesian edges of M are preserved by small limits in the following
sense. Leta : s — s’ beanedgein S, e : K* — M and ¢’ : K¥ — My limit diagrams, and
f e — ¢ an edge in Fun(K<, M) over a. If f(k) is p-co-Cartesian (resp., p-Cartesian) for every
k € K, then the same is true for f(o0), where co € K” is the cone point. This is simply a reformulation
of the fact that [ (resp., r) takes an edge of S to a limit-preserving functor. Consider the simplicial
set N = MP” Xgoor S whose n-simplices correspond to pairs consisting of an n-simplex [n] — §
and an S-morphism [n] X D°? — M. Let N’ c N be the largest simplicial subset whose vertices
correspond to limit-preserving functors D°? — M for some s € S.Letg : N — Sand ¢’ : N — §
be the obvious projections. By [Lur(09, Proposition 2.4.2.3(2) & Proposition 3.1.2.1], g is again a co-
Cartesian fibration, classified by Fun(D,-) o/ : § — CAT, and a Cartesian fibration classified
by Fun(D°P, =) o r : § — (CAT)P. Since p-co-Cartesian (resp., p-Cartesian) edges are preserved
by small limits, it follows readily that a g-co-Cartesian (resp., g-Cartesian) edge whose domain (resp.,
target) belongs to N’ lies entirely in N’. This shows that ¢’ is a co-Cartesian fibration, classified by
" = Fun™ (D, ) o [ : § — CAT.,, and a Cartesian fibration classified by r’ = Fun™(D —) o r :
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S — (CAT4)P. It follows that I’ factors through CATY , r’ factors through CATR and !’ coincides with
the composition of

80 2, (CATR ) 5 CATL..

Unravelling the definitions, this gives what we want. O

Proof of Theorem 2.3.4. Tt suffices to prove that for every rigid analytic space S, the functor
RigSH*™ " (= A) : (Et/S)P — P,

is a 7-(hyper)sheaf. (When 7 = nis, one can restrict further to (Et&/S)°P, but this does not change
the argument.) This functor transforms coproducts in Et/S into products in Pr™. Thus, it suffices to
show that it admits descent with respect to internal hypercovers of (Et/S, 7), which are truncated in the
nonhypercomplete case.

For U € Et/S, we have (RigSm/S)/U =~ RigSm/U. Corollary 2.3.8 implies that the functor

Shv'™ (RigSm/—; A) : (Et/S)*® — Pr-

is a 7-(hyper)sheaf. Let U, be an internal hypercover of (Et/S,7) which we assume to be trun-
cated in the nonhypercomplete case. For all n > -1, RigSHiﬁ’ (A)(Un;A) is a full sub-co-category

of Shv(TA)(RigSm/ U,; A). Since limits in CAT,, preserve fully faithful embeddings, we deduce that
limp,jea RigSHiﬁ’ " (Uy; A) can be naturally identified with the sub-co-category of

Shv{" (RigSm/U_; A) ~ lim Shv"Y (RigSm/Uy; A)
n|e

spanned by the objects F € ShV(TA> (RigSm/U_1; A) such that f*F belongs to RigSHeTﬁ’ % (Up; A), with
f :Up — U_,. Thus, to prove that RigSHeTff’ " (—; A) has descent for the T-hypercover U,, we need to
check the following property: If F is a 7-(hyper)sheaf on RigSm/S such that f*J is B!-invariant, then
so is F. This follows immediately from the equivalence Ho_m(]B%]O, f*F) ~ f*Hom(B} _,»J) and the
fact that f* is conservative.

We now explain how to deduce the T-stable case from the effective case. We temporarily denote by

RigSHfﬁ’ A (=, A)* (resp., RigSH(Teff’ A (=3 A).) the presheaf (resp., copresheaf) given informally by
U RigSH(Teﬁ’ A)(—;A) and f — f* (resp., f — f.). Recall from Remark 2.1.17 that the presheaf
RigSH(TA) (—; A)* can be defined as the colimit in PSh(Et/S; Pr") of the N-diagram of presheaves:

RigSH™ Y (= A)* 225 RigSHS™ Y (—;A) 125, ..
It follows from [Lur09, Corollary 5.5.3.4 &Theorem 5.5.3.18] that the copresheaf RigSH(TA) (U; Ay
can be computed as the limit in Fun(Et/S, CAT,,) of the N°P-diagram of copresheaves

Hom(T,-) Hom(T,-)
- 2207 RigSHET (Y (2 A), ——7, RigSH™ ™ (=; A)..
Given that the natural transformation f*Hom(T,-) — Hom(T, —) o f* is an equivalence for f étale,

we deduce that the presheaf RigSH(TA) (—; A)* can also be computed as the limit in PSh(Et/S; CAT..)
of the N°P-diagram of presheaves

Hom(T,-) : Hom(T,-) g
- = RigSHY" "V (= A)” ——— RigH" "V (= A)".

Since RigSHiﬁ’ A (—; A)* was proven to be a 7-(hyper)sheaf, this finishes the proof. O
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2.4. Compact generation

In this subsection, we formulate conditions (in terms of A, S and 7) insuring that the co-category
RigSH(Teﬂ’A)(S; A) of rigid analytic motives over S is compactly generated. Similar results in the
algebraic setting were developed in [Ayo07b, §4.5.5] and [Ayo14a, pages 29-30].

Remark 2.4.1. Let X be an co-topos. An abelian group object of X<y endowed with the structure of
a mpA-module is called a discrete sheaf of mgA-modules on X. The n-th cohomology group of X with
coeflicients in a discrete sheaf of mgA-modules JF is defined in [Lur09, Definition 7.2.2.14] and will be
denoted by H" (X; &).

Recall the following notions. (Compare with [Lur(09, Definition 7.2.2.18].)
Definition 2.4.2. Let X be an co-topos.

(1) The A-cohomological dimension of an object X € X is the smallest d € N LI {—o0, co} such that
for every discrete sheaf of mgA-modules F on Xy, the cohomology groups H" (X/x; &) vanish for
n > d. The global A-cohomological dimension of X is the A-cohomological dimension of a final
object of X.

(2) The local A-cohomological dimension of X is the smallest d € N LI {—o0, co} such that every object
X € X admits a cover (¥; — X); such that ¥; is of A-cohomological dimension < d for all i. (Recall
that (¥; — X); isacoverif [[; ¥; — X is an effective epimorphism in the sense of [Lur(09, §6.2.3].)

Remark 2.4.3. Keep the notation as in Definition 2.4.2. A discrete sheaf of moA-modules F on X/x is
a hypersheaf, i.e., belongs to (X,x)" =~ (X"),x+. Thus, there are isomorphisms

Hi(:X:/X;?) =~ Hi(:X:/)(A;SF) =~ Hi((x/\)/xA;?).

In particular, the A-cohomological dimension of an object X is equal to the A-cohomological dimension
of its hypercompletion X” considered as an object of X or X”. Similarly, the global (resp., local) A-
cohomological dimensions of X and X* coincide.

Remark 2.4.4. We define the local (resp., global) A-cohomological dimension of a site (C,7) to be
the local (resp., global) A-cohomological dimension of the topos Shv.(€) (or, equivalently, Shv} (€)).
Similarly, we define the A-cohomological dimension of an object X of a site (C,7) to be the A-
cohomological dimension of the image of X in Shv.(€) (or, equivalently, Shv’(€)). By Lemma 2.3.6,
this coincides with the global A-cohomological dimension of the site (C,x, 7).

We gather some well-known consequences of the finiteness of the local A-cohomological dimension
in the following statement. (See Remark 2.1.3.)

Lemma 2.4.5. Let (C, 7) be a site of finite local A-cohomological dimension.

(1) Postnikov towers in Shv’>(C; A) converge, i.e., the obvious map
F - lim7,F
neN

is an equivalence for every T-hypersheaf of A-modules F on C.

(2) If F is a connective T-hypersheaf of A-modules on C and X € C is of A-cohomological dimension
< d, then the A-module F(X) is (—d)-connective.

(3) Assume that C is an ordinary category admitting fiber products and that every object of C is quasi-
compact in the sense of [SGAIV2, Exposé VI, Définitions 1.1]. If X € C is of finite A-cohomological
dimension, then the functor Shv’;(C; A) — Moda, F +— F(X) commutes with arbitrary colimits.
In particular, A+ (X) is a compact object of Shv/;(C; A).

Proof. We may replace (C, 7) with any site that gives rise to the same hypercomplete topos. Thus,
we may assume that every object of C has A-cohomological dimension < d. Property (2), for every
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object X € C, follows from [Ayo07b, Proposition 4.5.58] when (C, 7) is an ordinary site and A the unit
spectrum. However, the proof of loc. cit. can be adapted without difficulty to our setting. That proof gives
also property (1). (Note that (1) can be deduced from (2), but usually these two properties are proven
together.) Since F — F(X) is an exact functor between stable co-categories, it preserves pushouts. By
[Lur09, Proposition 4.4.2.7], to prove property (3) it is enough to show that this functor commutes with
filtered colimits. This follows from property (2) as in the proof of [Ayo07b, Corollaire 4.5.61]. (The extra
conditions on C are used via [SGAIV2, Exposé VI, Corollaire 5.3] and can be substantially weakened.)

For a modern and more general treatment of this type of question, we refer the reader to [CM21, §2].
In particular, property (1) follows from [CM21, Proposition 2.10] (see also [CM21, Example 2.11]).
Property (3) can be deduced from [CM21, Proposition 2.23]. Finally, we mention [Lur09, Proposition
7.2.1.10], which is obviously related to property (1). O

Corollary 2.4.6. Let (C, 1) be a site, and assume the following conditions:

(1) Ais eventually coconnective (i.e., its homotopy groups ;A vanish for i big enough),

(2) (C, 1) has finite local A-cohomological dimension, and C is an ordinary category with fiber prod-
ucts;

(3) there exists a full subcategory Cy C C stable under fiber products, spanned by quasi-compact
objects of finite A-cohomological dimension, and such that every object of C admits a T-cover by
objects of Cy.

Then every t-sheaf of A-modules on C is a T-hypersheaf, i.e., we have Shv’y (C; A) = Shv,(C; A).

Proof. By Lemma 2.1.4, we may replace C with €y and assume that every object of C is quasi-
compact, quasi-separated and of finite A-cohomological dimension. For X € C, the 7-sheaf A;(X) is
hypercomplete since A is eventually coconnective. Thus, it is enough to show that T-hypersheaves are
stable under colimits in Shv;(C; A). The result then follows from [CM21, Proposition 2.23], but we can
also deduce it formally from Lemma 2.4.5 as follows. Indeed, let p : K — Shv’(C; A) be a diagram of
T-hypersheaves of A-modules. The colimit of p in Shv(C; A) is the T-sheafification of the colimit of p
in PSh(C; A). So it is enough to show that the colimit of p in PSh(C; A) is already a 7-hypersheaf. This
follows immediately from Lemma 2.4.5(3). ]

We now give some estimates for the local and global A-cohomological dimensions of the various
small sites associated to a rigid analytic space.

Lemma 2.4.7. Let X be a rigid analytic space of Krull dimension < d. The local A-cohomological
dimension of (Et¥"/X,nis) is < d. If X is quasi-compact and quasi-separated, the same is true for the
global A-cohomological dimension.

Proof. Since every object of Et& /X can be covered by quasi-compact and quasi-separated rigid analytic
spaces of Krull dimension < d, itis enough to prove the assertion concerning the global A-cohomological
dimension. In particular, we may assume that X is quasi-compact and quasi-separated. The site
(Ete"/X, nis) is then equivalent to the limit of the Nisnevich sites (Et/X, nis), for X € Mdl’(X) (see
Remark 1.1.10). It follows from [SGAIV?2, Exposé VII, Théoréme 5.7] that the global A-cohomological
dimension of the site (Et2"/ X, nis) is smaller than the supremum of the global A-cohomological dimen-
sions of the sites (Et/X ., nis), for X € Mdl’(X). But if X is a formal model of X belonging to Mdl’(X),
the closed map | X| — |X | is surjective. Thus, the dimension of X is smaller than the dimension of
X, and we conclude using [CM21, Theorem 3.17]. O

Definition 2.4.8. Let G be a profinite group. The A-cohomological dimension of G is the smallest
d € NU{oo} such that, for every o A-module M endowed with a continuous action of G, the cohomology
groups H'(G; M) vanish for i > d. The virtual A-cohomological dimension of G is the infimum of
the A-cohomological dimensions of the finite-index subgroups of G. If G admits a finite-index torsion-
free subgroup H, then the virtual A-cohomological dimension of G is equal to the A-cohomological
dimension of H. (See [Ser94, Chapitre I, §3.3, Proposition 14].)
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Let k be a field with absolute Galois group Gi. The (virtual) A-cohomological dimension of k is
defined to be the (virtual) A-cohomological dimension of G.

Remark 2.4.9. Let & be a field. The following are classical facts about Galois cohomology.

(1) If the A-cohomological dimension of k is different from its virtual A-cohomological dimension,
then k admits a real embedding and 2 is not invertible in moA.

(2) If k has (virtual) A-cohomological dimension < d and K /k is an extension of transcendence degree
< e, then K has (virtual) A-cohomological dimension < d + e.

(3) Number fields have virtual A-cohomological dimension < 3, and finite fields have A-cohomological
dimension < 2.

Property (1) follows from [Ser94, Chapitre II, §4.1, Proposition 10’]. Property (2) follows from [Ser94,
Chapitre I1, §4.2, Proposition 11]. Property (3) follows from [Ser94, Chapitre II, §4.4, Proposition 13].

Definition 2.4.10. Let X be a scheme or a rigid analytic space. We denote by pved, (X) € N LI {—oo0, 0o}
the supremum of the virtual A-cohomological dimensions of the fields «(x) for x € |X|. This number is
called the punctual virtual A-cohomological dimension of X.

Lemma 2.4.11. Let X be a rigid analytic space of Krull dimension < d and of punctual virtual A-
cohomological dimension < e. Then, the local A-cohomological dimension of the site (Et/X,ét) is
< d + e. The same is true for the global A-cohomological dimension if X is quasi-compact and quasi-
separated and if the A-cohomological dimension of the residue field of every point of X coincides with
the virtual one.

Proof. Replacing X by a suitable étale cover (e.g., by X[%, vV-1] - X and X[%, V1] — X), we may
assume that the A-cohomological dimension of the residue field of each point of X coincides with the
virtual one. We may also assume that X is quasi-compact and quasi-separated. Under these conditions,
we will show that the global A-cohomological dimension of (Et/X,ét) is < d + e, which suffices to
conclude.

Denote by 7 : (Et/X,ét) — (Et€/X,nis) the obvious morphism of sites. Given an étale sheaf F
of mpA-modules on Et/X, we denote by R, its (derived) direct image. Using Lemma 2.4.7, we are
reduced to showing that Rz, F is (—e)-connective. We check this on stalks at Nisnevich geometric rigid
points of X as in Construction 1.4.27. Let s € S be a point and ¢+ — S a Nisnevich geometric rigid
point over s. Thus, ¢ = Spf(x*(z)) with «*(¢) the adic completion of the Henselisation of x*(s) at a
morphism Spec(k(#)) — Spec(«*(s)) associated to a separable finite extension k() /x(s). It follows
from Corollary 1.4.20 that (Rx,.F), is equivalent to RT ¢ (z; (t — S)*F). Thus, it is sufficient to show
that the global A-cohomological dimension of (Et/z,ét) is smaller than e. Since *(f) is Henselian,
every étale cover of ¢ can be refined by one of the form Spf(V)'¢ — ¢, where V is the normalisation of
«*(¢) in a finite separable extension of (7). Thus, the global cohomology of (Et/z, ét) coincides with
the Galois cohomology of «(#). Since the field x(¢) is the completion of an algebraic extension of «(s),
we deduce that its A-cohomological dimension is < e as needed. O

The following is a corollary of the proof of Lemma 2.4.11.

Corollary 2.4.12. Let X be a rigid analytic space, and let F be a discrete sheaf of Q-vector spaces on
(Et/X, ét). Then the natural map H*, (X;F) — H; (X; ) is an isomorphism.

nis

Proof. Arguing as in the proof of Lemma 2.4.11, the result follows from the vanishing of the higher
Galois cohomology groups with rational coefficients. O

Corollary 2.4.13. Let X be a rigid analytic space of Krull dimension < d. If A is a Q-algebra, then
the local A-cohomological dimension of the site (Et/X,ét) is < d. If X is quasi-compact and quasi-
separated, the same is true for the global A-cohomological dimension.

Definition 2.4.14. Let S be a scheme or a rigid analytic space.
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(1) We say that S is (A, ét)-admissible if there exists an open covering (S;); of S such that each S; has
finite Krull dimension and finite punctual virtual A-cohomological dimension. For convenience, we
also say that S is (A, nis)-admissible when S is locally of finite Krull dimension.

(2) If 2 is not invertible in moA, we say that S is (A, ét)-good if O(S) contains a primitive n-th root of
unity for some n > 3. For convenience, we agree that S is always (A, 7)-good if 2 is invertible in
mo/\ or if 7 is the Nisnevich topology.

Remark 2.4.15. If S is (A, ét)-good, then the A-cohomological dimension of the residue field of each
of its points coincides with the virtual one. This follows from Remark 2.4.9.

Lemma 2.4.16. Let Y — X be a morphism of rigid analytic spaces which is locally of finite type, and
let y € Y be a point with image x € X. If the (virtual) A-cohomological dimension of k(x) is finite, then
so is the (virtual) A-cohomological dimension of k(y).

Proof. We use the fact that x(y)/«(x) is topologically of finite type, i.e., that x(y) is the completion of
a finite type extension of «(x). It follows that the absolute Galois group of x(y) can be identified with a
closed subgroup of the absolute Galois group of a finite type extension of x(y). We then conclude using
Remark 2.4.9(2). Alternatively, one can deduce the result from [Hub96, Lemma 2.8.4]. ]

Corollary 2.4.17. Let T € {nis,ét}. Let f : T — S be a morphism of rigid analytic spaces which is
locally of finite type. If S is (A, 7)-admissible, then so is T.

Proof. This follows immediately from Lemma 2.4.16. O

Lemma 2.4.18. Let 7 € {nis, ét}, and let S be a (A, T)-admissible rigid analytic space.
(1) (Case T = nis) Every Nisnevich sheaf of A-modules on Et&/S is a Nisnevich hypersheaf, i.e., we
have

Shv”

nis

(Et8"/S: A) = Shvpis (BtE/S; A).

The same statement is true with ‘Et&" /S’ replaced with ‘Et/S” or ‘RigSm/S".
(2) (Case T = ét) Assume that A is eventually coconnective. Then every étale sheaf of A-modules on
Et/S is an étale hypersheaf, i.e., we have

Shvj, (Et/S; A) = Shve (Et/S; A).

The same statement is true with ‘Et/S’ replaced with ‘RigSm/S’,

Proof. If F is a T-sheaf of A-modules on RigSm/S whose restriction to Et/X (or Et2"/X if applicable)
is a T-hypersheaf for every quasi-compact and quasi-separated X € RigSm/S, then F is a 7-hypersheaf.
(Indeed, if this holds, the morphism ¥ — F” induces equivalences F(X) ~ F*(X) for every X €
RigSmI°¥ /S, so it is itself an equivalence.) Therefore, using Corollary 2.4.17, it is enough to treat the
cases of the small sites of S, with S quasi-compact and quasi-separated. The case of (Et/S, ét) follows
then from Corollary 2.4.6 and Lemma 2.4.11. The case of (Et¢"/S, nis) needs a special treatment.
For this, we remark that if (X, ), is a cofiltered inverse system of quasi-compact and quasi-separated
schemes of dimension < d (with d independent of @), then the proof of [CM21, Theorem 3.17] can be
adapted to show that the site lim, (Et/ X, nis) is locally of homotopy dimension < d, which implies
that the associated topos is hypercomplete by [Lur09, Corollary 7.2.1.12]. Applying this to the inverse
system (84 )semar (s) gives the result. O

Proposition 2.4.19. Let T € {nis, ét}, and let S be a (A, T)-admissible rigid analytic space. When 7 is
the étale topology, assume that \ is eventually coconnective. Then, we have

RigSH™"(5; A) = RigSH"™ (S; A).

Proof. This follows immediately from Lemma 2.4.18. O
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Proposition 2.4.20. Let T € {nis, ét}, and let S be a rigid analytic space.

(1) The co-category Shv,(RigSm/S; A) is compactly generated if T is the Nisnevich topology or if A
is eventually coconnective. A set of compact generators is given, up to desuspension, by the A (X)
for X € RigSm/S quasi-compact, quasi-separated and (A, T)-good.

(2) The oo-category Shv7(RigSm/S; A) is compactly generated if S is (A, 7)-admissible. A set of
compact generators is given, up to desuspension, by the A+(X) for X € RigSm/S quasi-compact,
quasi-separated and (A, T)-good.

The above statements are also true with ‘RigSm/S’ replaced with ‘Et/S” and ‘Et&"|S” when applicable
(i.e., when T is the Nisnevich topology).

Proof. In each situation, we only need to show that A, (X) is a compact object assuming that X is quasi-
compact and quasi-separated. The problem being local on X, we may actually assume that X = Spf(A)"e
for an adic ring A of principal ideal type. Saying that A, (X) is compact is equivalent to saying that the
functor F +— F(X) commutes with filtered colimits. This can be checked by first restricting to the small
site of X. Therefore, we may replace S by X and assume that S = Spf(A)"¢ for an adic ring A. Moreover,
it is enough to show the versions of the above statements for Et/S, when 7 = ét, and for Et¢'/S, when
7 = nis. (Here we implicitly rely on Corollary 2.4.17.) We split the proof into two steps. (The reduction
to S = Spf(A)"# is only needed in the second step.)

Step 1

Here we prove the second statement. We concentrate on the étale topology; the case of the Nisnevich
topology is similar. Thus, we need to show that A« (X) is a compact object of Shvg\t(Et/S;A) when
X e Et/S is quasi-compact, quasi-separated and (A, ét)-good. This follows from combining Lemmas
2.4.5and 2.4.11 and using Remark 2.4.15.

Step 2

Here we prove the first statement. Let 71 € A be a generator of an ideal of definition. We may write A
as the colimit of a cofiltered inductive system (A, ), Where each A, is an adic Z[[n]]-algebra which
is topologically of finite type. Set S, = Spf(A,)"2. Since the inclusion functor Prl, — Pr commutes
with filtered colimits by [Lur(09, Proposition 5.5.7.6], it is enough by Lemma 2.4.21 below to show the
first statement for each S,. Said differently, we may assume that S is of finite type over Spf(Z[[nx]])"¢
and, hence, (A, 7)-admissible. Since A is eventually coconnective when 7 = ét, Lemma 2.4.18 implies
that Shvg (Et/S; A) is equivalent to Shvy, (Et/S; A) and similarly for the small Nisnevich site. We may
now use the first step to conclude. O

Lemma 2.4.21. Let (8,)a be a cofiltered inverse system of quasi-compact and quasi-separated formal
schemes with affine transition maps, and let 8§ = limy, S, be the limit of this system. We set Sq = Sy°

and S = 8", Then there is an equivalence
colim Shvg (Et/Sq; A) =~ Shvg (Et/S; A) (23)
a
in PrY, where the colimit is also taken in Pr-. A similar result is also true for the small Nisnevich sites.
Proof. We only discuss the étale case. We have an equivalence of co-categories

colim PSh(Et/S,; A) ~ PSh(colimEt/S,; A), (24)
a a

where the first colimit is taken in Pr". (This is clear for P(-) instead of PSh(—;A) by the universal
property of co-categories of presheaves, and we deduce the formula for PSh(—; A) using the equivalence
PSh(—; A) = P(-) ® Mod,.) Using Remark 2.3.2, the fact that every cover in lim, (Et/S, ét) is the
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image of a cover in (Et/S, ét) for some a, and the universal property of localisation given by [Lur09,
Proposition 5.5.4.20], we deduce from the equivalence (24) an equivalence of co-categories

colim Shvg (Et/S4; A) ~ Shvg(colimEt/S,; A), (25)
a (o3

where the first colimit is taken in Pr. On the other hand, by Corollary 1.4.20, we have an equivalence
of sites (Et/S, ét) ~ lim, (Et/S,, ét). Applying Lemma 2.1.4, we get an equivalence of co-categories

Shve (colimEt/Sq; A) = Shve (Et/S; A). (26)
We conclude by combining the equivalences (25) and (26). ]

Proposition 2.4.22. Let T € {nis, ét}, and let S be a rigid analytic space.

(1) The co-category RigSHg.eff) (S; A) is compactly generated if T is the Nisnevich topology or if A is
eventually coconnective. A set of compact generators is given, up to desuspension and negative Tate
twists when applicable, by the M™) (X) for X € RigSm/S quasi-compact, quasi-separated and
(A, 7)-good.

(2) The oo-category RigSH(Teﬁ)’A(S; A) is compactly generated if S is (N, 7)-admissible. A set of
compact generators is given, up to desuspension and negative Tate twists when applicable, by the
M (X) for X € RigSm/S quasi-compact, quasi-separated and (A, T)-good.

Moreover, under the stated assumptions, the monoidal co-category RigSHf,eﬂC’ A)(S ; A\)® belongs to
CAlg(Pr];)) and, if f : T — Sis a quasi-compact and quasi-separated morphism of rigid analytic spaces
with T assumed (A, T)-admissible in the hypercomplete case, the functor f* : RigSH(Teﬂ’ A (S;A) —
RigSH(Teff’ A (T; A) is compact-preserving, i.e., belongs to Pr%.

Proof. Using Lemma 2.1.20, we are left to show that the objects M) (X) are compact, for X as in
the statement. In the effective case, this would follow from [Lur(09, Corollary 5.5.7.3] and Proposition
2.4.20 if we knew that RigSHiﬁ’ (A (S; A) is stable under filtered colimits in Shv.(,/\) (RigSm/S; A). But
this is indeed the case by Proposition 2.4.20 and Remark 2.1.12. The T-stable case follows from the
effective case using Remark 2.1.17 and [Lur09, Proposition 5.5.7.6]. O

Remark 2.4.23. A similar statement with a similar proof is also true for the co-category SH(Teff’ A (S;A)
of algebraic motives over a scheme S, generalising [Ayo14a, Proposition 3.19].

2.5. Continuity, 1. A preliminary result

The goal of this subsection and the next one is to prove the continuity property for the functor
RigSH(Teﬁ) (=; A) which, roughly speaking, asserts that this functor transforms limits of certain cofil-
tered inverse systems of rigid analytic spaces into filtered colimits of presentable co-categories. The
precise statement is given in Theorem 2.5.1 below. (Note that we do not claim that S is the limit of
(Sa)q in the categorical sense.) Later, in Subsection 2.8, we will generalise Theorem 2.5.1 to include
more general inverse systems and a weaker notion of limits; see Theorem 2.8.15 below.

We let 7 € {nis, ét} be a topology on rigid analytic spaces.

Theorem 2.5.1. Let (8,)q be a cofiltered inverse system of quasi-compact and quasi-separated formal
schemes with affine transition maps, and let 8 = limy 8, be the limit of this system. We set So = 8¢
and S = 8"¢. We assume one of the following two alternatives.

(1) We work in the nonhypercomplete case.

(2) We work in the hypercomplete case, and S and the S, ’s are (A, T)-admissible. When 7 is the étale
topology, we assume furthermore that A is eventually coconnective or that the numbers pvcd, (Sq)
are bounded independently of a. (See Definition 2.4.10.)
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Then the obvious functor

colim RigSH™ " (S ,: A) — RigSH™ Y (5; A), 27)
a

where the colimit is taken in P, is an equivalence.

Remark 2.5.2. Keep the notations and hypotheses as in Theorem 2.5.1. Using [Lur17, Corollary 3.2.3.2],
we can upgrade the equivalence (27) into an equivalence

colim RigSH"™ (5,: A)® ~ RigSH™ ($;A)® (28)
a

in CAlg(Pr"), where the colimit is also taken in CAlg(Pr").

Remark 2.5.3. The two alternatives considered in the statement of Theorem 2.5.1 have a nontrivial
intersection given as follows.

(2’) We work in the hypercomplete case, and we assume that the S,’s and S are (A, 7)-admissible.
When 7 is the étale topology, we assume furthermore that A is eventually coconnective.

Indeed, by Proposition 2.4.19, we have in this case RigSH(Teﬁ)’A(S aN) = RigSH(Teﬁ)(SQ;A), and
similarly for S in place of the S,’s. Said differently, the alternative (1) covers the alternative (2) except
when A is not eventually coconnective, in which case we need a strong assumption on the punctual
virtual A-cohomological dimensions of the S, ’s.

Remark 2.5.4. Theorem 2.5.1 in the nonhypercomplete case is a motivic version of Lemma 2.4.21.

The conclusion of this lemma holds also in the hypercomplete case under the alternative (2) as shown
in Corollary 2.5.10 below.

The proof of Theorem 2.5.1 spans the entire subsection and the next one. In fact, we will obtain this
theorem as a combination of two other results, namely Propositions 2.5.8 and 2.5.12, which are both
interesting in their own right. The proof of Proposition 2.5.12 will be given in Subsection 2.6.
Notation 2.5.5. Let (S, ), be a cofiltered inverse system of quasi-compact and quasi-separated rigid
analytic spaces. We define the co-category RigSH(Teﬁ’ M ((Sa)as M), of rigid analytic motives over the
rigid analytic pro-space (S4)a, in the usual way from the limit site lim, (RigSm/S,, 7), that is, from
the ordinary category

RigSm/(S4)e = colimRigSm/S,
a

endowed with the limit topology 7. More precisely, one repeats Definitions 2.1.11 and 2.1.15 with
‘RigSm/S’ replaced with ‘RigSm/(S,).’. We denote also by

MM : RigSm/(Sa)e — RigSH™ ™ ((S4)a: A)

the obvious functor.

Remark 2.5.6. Let Pro(RigSpc) be the category of rigid analytic pro-spaces, and consider the overcat-
egory Pro(RigSpc)/(Sq)a of (Sq)qe-objects. There is a fully faithful embedding

RigSm/(S«)a — Pro(RigSpc)/(Sq)as

and we will identify RigSm/(S,), with its essential image by this functor. Thus, we may think of an
object of RigSm/(S ), as a pro-object (Xy)a<a,. Where X, is a smooth rigid analytic S ,,-space and,
for @ < @, Xo = Xq, XS0 Sa- If (Sa)q is as in Theorem 2.5.1, given such a pro-object (Xo)a<ay
we denote by X the rigid analytic S-space defined as follows. Assume first that there is a formal model
Xq, of Xo over Sq,. Let (Xa)aza, be the formal pro-scheme given by Xo = X, Xs,, Sa- We set
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X = X", where X = limy <y X This is independent of the choice of X, and the formation of X is
compatible with gluing rigid analytic S,,-spaces along open immersions. Thus, the construction of X
can be extended to the general case where we do not assume the existence of a formal model for X,,.

Lemma 2.5.7. Let (Sy)q and S be as in Theorem 2.5.1, and assume that S is (A, T)-admissible. Then, the
oco-category Shv (RigSm/(Sa)a; A) is compactly generated, up to desuspension, by the A+ ((Xa)a<ay)
with X o, quasi-compact, quasi-separated and (A, T)-good.

Proof. This can be shown by adapting the proof of Proposition 2.4.20(2). The key point is to show that
lim < o, (Et/ X4, 7) has finite local and global A-cohomological dimensions. By Corollary 1.4.20, this
limit site is equivalent to (Et/X, 7). Thus, we may use Lemma 2.4.11 to conclude. O

Proposition 2.5.8. Let (S, )q and S be as in Theorem 2.5.1, and assume one of the alternatives (1) or
(2) of that theorem. Then the obvious functor

colim RigSH™ Y (S ,: A) — RigSH™ Y ((S0)a: A), (29)
a

where the colimit is taken in P&, is an equivalence.

Proof. We first work under the alternative (1), i.e., in the nonhypercomplete case. Here the result is
quite straightforward. Arguing as in the proof of Lemma 2.4.21, we get an equivalence of co-categories

colim Shv; (RigSm/S,; A) = Shv(RigSm/(S4)ae; A), (30)

where the colimit is taken in Pr". Using the universal property of localisation given by [Lur(09, Proposi-
tion 5.5.4.20], we deduce from the equivalence (30) that the functor (29) is an equivalence in the effective
case. We then deduce the T-stable case using Remark 2.1.17 and commutation of colimits with colimits.

Next, we work under the alternative (2). Arguing as before, we see that it is enough to prove the
hypercomplete analogue of the equivalence (30), i.e., it is enough to show that

co(lyim Shv/(RigSm/S4; A) — Shv}(RigSm/(Sa)a: A), (31)

is an equivalence. It follows from Lemma 2.5.7 that the functor (31) belongs to Prﬁ) and that it takes a set
of compact generators to a set of compact generators. Thus, it remains to show that this functor is fully
faithful on compact objects. Explicitly, we need to show the following assertion. Given two compact
objects M and N in Shv/ (RigSm/S a,; A), for some index ayp, the natural map

CO]lm Map(f;<(toM’ f;<QON) - Map(f;OM’ f(:ON) (32)
a<ap - -

is an equivalence. Here fy<q, : So = Sa, and fo, : (Sa)a — Sa, are the obvious morphisms.

Let 7 be the indexing category of the inverse system (So)o. We denote by S:1— RigSpc the
diagram of rigid analytic spaces defining the pro-object (Sq ). i€., sending @ to S,. We define the
site (RigSm/S, 7) in the usual way, i.e., by adapting the beginning of [Ayo07b, §4.5.1]. We have a
premorphism of sites (in the sense of [Ayo07b, Définition 4.4.46])

p : (RigSm/(S)a:7) — (RigSm/S, 7) (33)
induced by the functor RigSm/§ — RigSm/(S4)e given by (B8, X) = (X Xs; Sa)a<p- The inverse
image functor p* is given, informally, by p*(X) = colimg ((So)e — Sg)*Kg, where Kpg is the

restriction of X to RigSm/Sg. The inclusion RigSm/S 4, € RigSm/ S induces a functor

Shv{" (RigSm/S4,;: A) — Shvi" (RigSm/S; A). (34)
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We may assume that M = A (X,,) With X, € RigSm/S 4, quasi-compact, quasi-separated and (A, 7)-
good. We let R be the image of N by the functor (34). Arguing as in the proof of [Ayol4a, Proposition
3.20], the assertion that the map (32) is an equivalence would follow if we show that the functor

p* : PSh(RigSm%%/S; A) — PSh(RigSm%®/(Sa)a; A)

takes R to a presheaf p*(R) whose restriction to Etdses/ (Xa<ag)a is a T-hypersheaf. This follows from
Lemma 2.5.9 below. (Compare with [Ayol4a, Lemme 3.21].) O

Lemma 2.5.9. Let X : I — FSch be a diagram of quasi-compact and quasi-separated formal schemes,
with I a cofiltered category, and with affine transition morphisms. Let (X o) o be the associated pro-object
and X its limit. Set X = X"¢, X, = Xog and X = X"€. Assume that the alternative (2) in Theorem 2.5.1
is satisfied with ‘(Xq)o and ‘X’ instead of ‘(Sq)e’ and ‘S’. Assume also that the X, ’s are (A, T)-good.
Then the functor

p* : PSh(Et®°®/X; A) — PSh(Et%%/(Xy)a; A)

takes T-hypersheaves to T-hypersheaves.

Proof. We split the proof into three steps. Below X is a 7-hypersheaf of A-modules on Etd°4s /X

Step 1

We first deal with the case where A is eventually coconnective. The proof in this case is similar to
that of [Ayol4a, Lemme 3.21]. First, one considers the case where X is discrete, i.e., is the Eilenberg—
Mac Lane spectrum associated to an ordinary sheaf of mg A-modules. This case follows from [SGAIV?2,
Exposé VII, Théoréme 5.7]. By induction, one can then treat the case where X is bounded (i.e., where
the discrete sheaves ;(K) vanish for |i| big enough). Finally, we deduce the general case from the
bounded case as follows. A general X can be written as a colimit of objects of the form A (ay, U), for
U e Etae%) Xa,- Since A is eventually coconnective, A;(ap, U) is bounded. The result for X follows
then from the bounded case and Lemma 2.4.5(3) which implies that colimits in PSh(Et%%/(X,)q; A)
preserve T-hypersheaves. (Here we use that the site (Et4°%/(X ), 7) has finite local A-cohomological
dimension as explained in the proof of Lemma 2.5.7.)

Step 2

We next consider the case of the Nisnevich topology. The site (Eti°®/(X,)q,nis) is equivalent to
(Et9°9 /X nis). Thus, by Lemma 2.4.18(1), every Nisnevich sheaf on theqs/(X(,)a is a Nisnevich
hypersheaf. Thus, to check that p*X is a Nisnevich hypersheaf, it is enough to prove that p*X has
the Mayer—Vietoris property for the image in Et®°®/(X,), of a Nisnevich square in Etd°®/X,, for
some «. This is easily checked using exactness of filtered colimits on Mod, and the formula p*X =
colimg ((Xo)o — Xpg)*Kp. The details are left to the reader.

Step 3
We now treat the case of the étale topology assuming that the numbers pved, (X,) are bounded
independently of . In fact, since the X,’s are (A, ét)-good, there is a common bound e for the A-
cohomological dimensions of the residue fields of all the X, ’s.

Denote by 7 the morphism of sites of the form (Et/(-), ét) — (Et/(-), nis) and by 7, the induced
functor on co-categories of hypersheaves of A-modules. Also, denote by

p;is : ShV[/]\is(thch/jf; A) - Shvl’/l\is (thch/(XQ)a; A)

the inverse image functor on Nisnevich hypersheaves. By the second step, pj;  coincides with p* on
Nisnevich hypersheaves of A-modules.

By Lemma 2.4.5(3), the property that p*X is an étale hypersheaf is stable by colimits in X. Since
X =~ colim,7>_,XK, we may assume that X is bounded from above and even connective. By Lemma
2.4.5(1), we have an equivalence X =~ lim, 7<,X yielding an equivalence 7.K =~ lim, m.7<,X. The
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proof of Lemma 2.4.11 shows that 7.7<,+1K — m,7<,K induces an isomorphism on homotopy
Nisnevich sheaves in degrees < n — e, and the same is true for p}; T.7<;+1K — o5 7.7, K. Since X
and X, ’s have finite Krull dimensions, we deduce that the morphisms

Iimm,7<, K - 1.7, K and  1lim pyjsmeT<n K — pnisTeT<mK
n n

induce isomorphisms on homotopy Nisnevich sheaves in degrees < m — e, for any integer m. It follows
that the natural map

PrisTK = pii lirlln TT<n K — lirrlnp:isn*‘rgﬂ{ (35)

induces isomorphisms on homotopy Nisnevich sheaves. Since both sides are Nisnevich hypersheaves,
we deduce that the map (35) is an equivalence. Thus, we are left to show that py, 7.7, X is an étale
hypersheaf for every n. This follows from the first step since 7<,X is naturally an étale hypersheaf of
T<p/A-modules. m]

Lemma 2.5.9 has the following consequence which we state for completeness.
Corollary 2.5.10. Let (S, )q and S be as in Theorem 2.5.1, and assume one of the alternatives (1) or

(2) of that theorem. Then the obvious functor

colim Shvi™ (Et/S4; A) — ShviM (Et/S; A), (36)

where the colimit is taken in Pr¥, is an equivalence.

Proof. The nonhypercomplete case is already stated in Lemma 2.4.21. The hypercomplete case follows
from Lemma 2.5.9 by arguing as in the proof of [Ayol4a, Proposition 3.20]. O

The proof of Proposition 2.5.8, adapted to the algebraic setting gives the following generalisation of
[Ayol4a, Proposition 3.20] and [Hoy 14, Proposition C.12(4)].

Proposition 2.5.11. Let (S, ) be a cofiltered inverse system of quasi-compact and quasi-separated
schemes with affine transition maps, and let S = limg S, be the limit of this system. We assume one of
the following two alternatives.

(1) We work in the nonhypercomplete case.

(2) We work in the hypercomplete case, and S and the S,’s are (A, T)-admissible. When T is the étale
topology, we assume furthermore that A\ is eventually coconnective or that the numbers pved, (Sq)
are bounded independently of a.

Then the obvious functor

colim SH™ M (5,:A) — SHET Y (s; A),
(03

where the colimit is taken in Pr, is an equivalence.
Proof. Indeed, in the algebraic setting, Sm°% /S is equivalent to colim, Sm¥%/S,,. O
Theorem 2.5.1 follows by combining Proposition 2.5.8 and the next result.

Proposition 2.5.12. Let (Sy,)o be a cofiltered inverse system of quasi-compact and quasi-separated
formal schemes with affine transition maps, and let 8§ = lim, 8, be the limit of this system. We set
So =848 and S = 8"2. Then the obvious functor

RigSH™ " ((Sa)a: A) — RigSHL™ " (5:0) (37)

is an equivalence.
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The proof of Proposition 2.5.12 is given in the next subsection.

2.6. Continuity, I1. Approximation up to homotopy

The goal of this section is to prove Proposition 2.5.12. The proof is similar to that of [Vez19, Proposition
4.5], but some new ingredients are necessary to deal with the generality considered in this paper. We
start with some reductions.

Lemma 2.6.1. It is enough to prove Proposition 2.5.12 in the effective, nonhypercomplete case and for
T the Nisnevich topology. Said differently, it is enough to show that the obvious functor
RigSHT ((So)a; A) — RigSHET (S A) (38)

nis nis

is an equivalence.

Proof. The T-stable case follows from the effective case using Remark 2.1.17 and commutation of
colimits with colimits. Assume that the functor (38) is an equivalence, and let’s show that

RigSHS™ "V ((54)a: A) — RigSHS™ V(85 A) (39)

is also an equivalence for 7 € {nis, ét}. There are three cases to consider:

(1) the Nisnevich topology in the hypercomplete case;
(2) the étale topology in the nonhypercomplete case;
(3) the étale topology in the hypercomplete case.

In each case, we will prove that the source and the target of the functor (39) are obtained from the source
and the target of the functor (38) by localisation with respect to a set of morphisms and its image by
the equivalence (38), which suffices to conclude. These sets consist, respectively, up to desuspension,
of maps of the form colimp,jea MT((Un, @)a<a,) = M ((U-1, @)a<a,)s Where (Us, o)a<a, is:

(1) ahypercover in the limit site limy<q_, (Eter/ U_|, o, 1is);
(2) a Cech nerve associated to a cover in the limit site limg <o, (Et/U_, o, ét);
(3) ahypercover in the limit site limy <o, (Et/U-y, o, ét).

Localising the source of the functor (38) by one of these sets yield the source of the functor (39) by
construction. We now show that localising the target of the functor (38) by the image of one of these
sets yield the target of the functor (39). This relies on the following two facts.

(a) Givenanobject (Yq)o<pinRigSm/(S, ), and defining Y asin Remark 2.5.6, we have an equivalence
of sites

(Et/Y,7) ~ lim (Et/Y,, 7)
as<p

and similarly for “Et&" instead of ‘Et’ when applicable.
(b) Every X € RigSm/S is locally for the analytic topology in the essential image RigSm’/S of the
functor RigSm/(S4), — RigSm/S. In particular, we have an equivalence of sites

(RigSm/S, 7) =~ (RigSm’/S, 1)
which is subject to Lemma 2.1.4. Thus, the co-category RigSHiﬁ’ W (S; A) can be defined using

the site (RigSm’/S, 7).

Property (a) follows from Corollary 1.4.20 and Remark 1.4.21. To prove (b), we may assume that the
inverse system (8, ), is affine, induced by an inductive system of adic rings (A ), with colimit A and
that X = Spf(B)"¢ with B a rig-étale adic A(z)-algebra with t = (¢, ...,t,) a system of coordinates.
Then the result follows from Corollary 1.3.10. O
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Lemma 2.6.2. It is enough to prove that the functor (38) is an equivalence assuming that the formal
schemes S are affine of principal ideal type.

Proof. Without loss of generality, we may assume that there is a final object o in the indexing category
of the inverse system (S,)q. Replacing S, by the blowup of an ideal of definition and the S,’s by
their strict transforms, we may assume that the S,’s are locally of principal ideal type for every a.
The presheaf RigSHﬁfﬁ(—; A) has descent for the analytic topology by Theorem 2.3.4. Combining this
with Proposition 2.5.8 and [Lur17, Proposition 4.7.4.19], we see that the problem is local on §,, which
finishes the proof. (Note that the condition for applying [Lurl7, Proposition 4.7.4.19] is indeed satisfied
by the base change theorem for open immersions, a special case of the base change theorem for smooth

morphisms; see Proposition 2.2.1.) O

We now introduce a notation that we keep using until the end of the proof of Proposition 2.5.12.

Notation 2.6.3. Let (8, ), be a cofiltered inverse system of affine formal schemes, and let § = lim,, 8.
Denote by 8/, the smallest closed formal subscheme of 8, containing the image of § — §,. (Said
differently, O(8/,) is the quotient of O(8,) by the kernel of O(S,) — O(8) whichis aclosed ideal.) Then,
we have a cofiltered inverse system of affine formal schemes (8/,),, and a morphism (87,)q — (84)a Of
inverse systems given by closed immersions and inducing an isomorphism lim, 8/, =~ lim, 8, on the
limit.

Although, in general, the pro-objects (87,), and (8, ). are not isomorphic, we have the following.

Lemma 2.6.4. Let (S,)q be a cofiltered inverse system of affine formal schemes. Let S, and S, be the
rigid analytic spaces associated to 8 , and 8,. Then, the obvious functor

RigSH{ ((Sa)ai A) — RigSHE{((55)as A) (40)

nis nis
is an equivalence.

Proof. Tt will be more convenient to use Proposition 2.5.8 and prove that

colim RigSH! (S4:A) — colim RigSHC! (57,: A) 41)
is an equivalence in Pr". We set U, = So . S v, and denote by j, : U, — S, the obvious inclusion. For
each a, RigSH‘;fifs (Sa;A) — RigSHffs(S s A) is a localisation functor with respect to the class of maps
of the form 0 — j, yM, where M € RigSHflg(U «;\). This follows from the localisation theorem for
rigid analytic motives; see Proposition 2.2.3. Moreover, by Lemma 2.1.20, we may assume that M is,
up to desuspension, of the form M®T (X) with X € RigSm/U,, quasi-compact and quasi-separated.

It follows from the universal property of localisation (given by [Lur(09, Proposition 5.5.4.20]) that
the functor (41) is also a localisation functor with respect to the images of the maps 0 — j, yM, with
M as above. Thus, it is enough to show that, for X € RigSm/U,, quasi-compact and quasi-separated,
there exists f < @ such that X X, Sg = 0. This follows from the fact that X lies over a quasi-compact
open subset V C U, and that, for 8 < a small enough, we have Sg x5, V = 0 by, for example, [FK18,

Chapter 0, Proposition 2.2.10]. O

Notation 2.6.5. Let FSchyr ,; be the category of affine formal schemes of principal ideal type and
Pro(FSchyt, o) the category of pro-objects in FSchys ;. We have an idempotent endofunctor of
Pro(FSchyf, ) given by (84)a > (85, ). We define a new category Pro’ (FSchyy, ), having the same
objects as Pro(FSchyy, ;) and where morphisms are given by

Hompry (Fsehys, ) ((Tp)g> (8a)a) = Hompro(Eseny, ) ((Tp)p» (85)a)
=~ Hompro(esch,, ) ((Tg)g: (Sa)a)-
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The obvious functor Pro(FSchyr, ,r)®® — Pro’(FSchyg, 5 )P, given by the identity on objects, is a
localisation functor, and its right adjoint is given on objects by (84)a > (8%)a-

Corollary 2.6.6. The functor

RigSHET ((—)"8; A) : Pro(FSchyg, )P — Pr"

nis
extends uniquely to Pro’ (FSchat, pr)°P.

Proof. Indeed, Pro(FSchyf, ;)P — Pro’(FSchys, )P is a localisation functor and RigSHﬁg((—)rig; A)
transforms the morphisms (8/,)e — (84)e into equivalences by Lemma 2.6.4. Thus, the result follows
from [Lur09, Proposition 5.2.7.12]. ]

Remark 2.6.7. In the remainder of this subsection, we use the construction of RigSHﬁg(S ;) as a
localisation of the oco-category of presheaves of A-modules on FRigSm/S as explained in Remark
2.1.14. In fact, we will rather use the full subcategory of the latter, denoted by FRigSm,; /S, spanned
by formal S-schemes which are affine and of principal ideal type. (If S is of principal ideal type
and 7 a generator of an ideal of definition, then the second condition is equivalent to having a n-
torsion-free structure sheaf.) We are free to do so since the obvious inclusion induces an equiva-

lence of sites (FRigSm/8, rignis) ~ (FRigSmy /8, rignis). We will also need the analogous fact

for RigSHﬁg((Sa)a; A): Tt can be constructed as a localisation of the co-category of presheaves of

A-modules on

FRigSmy¢ ./ (Sqa)a = colim FRigSmy¢ . /Sa.

The above category will be endowed with the limit rig-Nisnevich topology so that the resulting site is
equivalent to the one used in Notation 2.5.5 (with T = nis). Moreover, the functor (38) is induced from
the obvious functor

FRigSmy¢ ,./(Sa)a — FRigSmy /8

af, pr
by the naturality of the construction of categories of motives.

Remark 2.6.8. (See Remark 2.5.6.) Given a cofiltered inverse system of affine formal schemes of
principal ideal type (84)qe, We denote by Pro(FSchyf, pr)/(8e)e the overcategory of (84)q-objects.
There is a fully faithful embedding

FRigsmaf, pr/(Sa)a - PrO(FSChaf, pr)/(sar)a/’ (42)

and we will identify FRigSm,¢ ,./(Sq)o With its essential image by this functor. Thus, we may think
of an object of FRigSm¢ . /(Sqa)a as a pro-object (Xq)a<ay, Where Xg, is a rig-smooth formal 8 o, -
scheme and, for @ < ap, Xy = Xy, XS 4 Sa/(0)™. We set 8 = lim, 8, and for an object (X4)a<a, a8
before, we set X = limg<q, Xo-

We now introduce a new category of formal pro-schemes over (S, )., Where, roughly speaking, the
endofunctor introduced in Notation 2.6.5 becomes an equivalence. We will also consider the co-category
of motives associated to this new category of formal pro-schemes and use it to divide the sought after
equivalence into two which are easier to establish.

Notation 2.6.9. Keep the assumptions as in Remark 2.6.8. We denote by FRigSm’, or /(8 a)e the full
subcategory of Pro’ (FSchyf, pr) /(S o) spanned by the objects which belong to the image of the functor
(42). More concretely, we have a functor

FRigSm,¢ ./ (Sa)o — FRigSmy; o/ (Sa)a (43)
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which is the identity on objects and such that, in the target, the set of morphisms from (Y,)a<g, to
(Xa)a<ay is the set of morphisms from (Y},)a<g, t0 (X,)a<ay OVer (8a)a-

Remark 2.6.10. Let FRigEt,;, pr/S be the full subcategory of FRigSm,; /8 spanned by rig-étale formal
8-schemes. Similarly, let

FRigEtaf, pr/ (8a)a = colim FRigEtaf, pr/8as
a

considered as a full subcategory of FRigSm,¢ ,./(Sa)e, and let FRigEt;f or /(84 )q beits essential image
by the functor (43). The obvious functors

FRigEtaf, pr/(sa)a d FRigEt;f, pr/(Sa)a - 1:RigEtaf, pr/‘S

are equivalences of categories. Indeed, it is so for their composition by Corollary 1.3.10, and the second
functor is faithful. This allows us to define the rig-Nisnevich topology on FRigEt;f or /(8 a)a» and more

generally on FRigSm;; or /(8 a)a by replacing (8,), with a general object of the latter category.

Proposition 2.6.11. Let (8,), be a cofiltered inverse system of affine formal schemes of principal ideal
type. The functor (Xo)a<ay — Meff ((Xfig)agao) extends naturally to a functor

M (—) : FRigSm/; _ /(8a)a — RigSHN ((Sa)a: A).

af, pr

(As usual, we set S, = Sr;g.)

Proof. By Corollary 2.6.6, there is a functor

ngSH ((-)"8;A) : (FR1gSmaf pr/(SQ)O{)"p — Pr*.

nis

For every (Xo)a<aq, in FRigSm/; /(84)a, With structure morphism f : (Xo)a<a, — (Sa)a, the

af, pr .
associated inverse image functor f* admits a left adjoint f3. Moreover, the motive M (X0 a<ap) i
equivalent to fy f*A. Hence, the result follows by applying Lemma 2.6.12 below. O

Lemma 2.6.12. Let C be an co-category and F : C°? — CAT a functor. Given a morphism f : Y — X
in C, we denote by [* : F(X) — F(Y) the induced functor. Assume that C admits a final object x and
that for every object X € C, the functor 'y, associated to wx : X — *, admits a left adjoint nx y. Then,
there is a functor C — Fun(JF(x), F (%)) sending X € C to the endofunctor nx yry and a morphism
f Y — X to the composition of

* ~ K * ,7 k * * ~ * * 6 *
my 4y =y g f Ty = Ay yf TxTx 4Ty = Ty ylyTx 4Ty — Tx 4Ty,
where 1) is the unit of the adjunction (rx 4, 7) and 6 is the counit of the adjunction (ry y, 7y,).

Proof. Let p : M — C be the Cartesian fibration associated to the functor J by Lurie’s unstraightening
construction [Lur(9, §3.2]. Since * is a final object of C, we have a natural transformation F(x)csy — F,
where F(*).t : C°? — CAT, is the constant functor with value F(x). This natural transformation
induces a morphism of Cartesian fibrations

Fr)xC—F M

RN
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The fiber of G over an object X € C is the functor 73, : F(*) — F(X), which admits a left adjoint by
assumption. By [Lurl7, Proposition 7.3.2.6], the functor G admits a left adjoint F relative to C in the
sense of [Lurl7, Definition 7.3.2.2]. Thus, we have a commutative triangle

3"(*)><e<—3vt

RN

and a natural transformation id — G o F over € which is a unit map. Moreover, the fiber of F over an
object X € Cis the functor x4 : F(X) — F(x).

Composing the endofunctor F oG of F(x) X € with the projection to F(x) yields a functor F(x) xC —
F (%) and, by adjunction, a functor ¢ — Fun(F(x), F(x)). We leave it to the reader to check that the
latter satisfies the informal description given in the statement. O

Remark 2.6.13. Let (S8,), be a cofiltered inverse system of affine formal schemes of principal ideal
type and 8 = lim, 8,. We set S, = 8 and S = 8"ie,

(1) There is a commutative diagram

FRigSmy; ,,/(Sq)e — FRigSm; pr/(Sa)a — FRigSmy; /8

reff (_ eff (¢ _\ri
T lM ) JM ((-))

ngSng((Sa)a, A) —— ngSng(S A).
This is not completely obvious. One needs to check that Lemma 2.6.12 applied to the contravariant
functor RigSHﬁg((—)“g;A) defined on FRigSm* /(8 4), and FRigSm? /8 gives back the func-
tor M ((-)"2). To do so, one reduces to a similar question, but for the contravariant functor
RigSm/(—)"2, which can be easily handled.

(2) It follows from the commutative triangle inside the diagram in (1) that M’ admits descent for
the rig-Nisnevich topology, i.e., it takes a truncated hypercover for the rig-Nisnevich topology to a
colimit diagram. (See Remark 2.6.10.)

(3) By the universal properties of presheaf categories and localisation, the commutative diagram in (1)
gives rise to a commutative diagram in Pr":

RigSHS ((Sa)as A) —— RigSH/ ((Sa)as A)

nis nis

T~ | T

RigSHT ((S4)a; A) — RigSHET (S; A),

nis nis
where RigSHI’ff ((Sa)as; A) is defined from the site (FRigSm/ af., r/ (8@ )a,rignis) in the usual way,
i.e., by adapting Definition 2.1.11. Thus, to finish the proof of Proposmon 2.5.12, it suffices to show
Proposition 2.6.14 below.

Proposition 2.6.14. Let (S )a be a cofiltered inverse system of affine formal schemes of principal ideal
type and 8 = lim,, 8. We set S, = 84F and S = 8"8. Then the obvious functor

RigSH T ((So)a; A) — RigSHS!

nis

L(S:A) (44)

nis

is an equivalence.
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Notation 2.6.15. From now on, we fix a cofiltered inverse system (8,), of affine formal schemes of
principal ideal type, and we let § = lim,, 8,. We define (8/,), as in Notation 2.6.3, and we set S, = SLE,
S/, = 85% and S = 818, We set A, = O(8,), AL, = O(8,,) and A = O(8). We identify A/, with a
subring of A and set A, = |J, AL, which is a dense subring of A. We also assume that there is an
element 7, which ‘belongs’ to all the A,’s and generates an ideal of definition in each A,. (This is not
a restrictive assumption since it is clearly satisfied when the indexing category of (8,), admits a final
object.) Given (Xq)a<a, in FRigSm,¢ lDr/(.S(,)(,, we use similar notations: B, = O(X,), B}, = 0(X,,),
B =0(X) and B, = Uy <o Bj, which is a dense subring of B.

Remark 2.6.16. The co-category RigSHr’ﬁf((S «)as \) is compactly generated, up to desuspension, by
M'eﬂ“((xa)agao), where (X4 )q<a, belongs to FRigSm;f, pr/(8(,)(,. (This can be proven by adapting the
proof of Proposition 2.4.22. The key point is that the small rig-Nisnevich site of (X 4)q<aq, is equivalent
to the small Nisnevich site of X; see Remark 2.6.10.) Using Proposition 2.4.22, we deduce that the
functor (44) belongs to Prl . This functor also sends a set of compact generators to a set of compact
generators. Indeed, by Proposition 1.3.8, a set of compact generators for RigSHflg(S ; \) is given, up to

desuspension, by motives of smooth rigid S-affinoids X = Spf(B)"® with B of the form
B = A<S1s~--asm9tla"-,tn>/(P1""’Pn)sat

with P; € AL [s1,...,Sm.t1,...,ts] such that det(0P;/dt;) generates an open ideal in B. Clearly,
Spf(B) is in the image of FRigSm,¢ ,./(Sq)a — FRigSmy¢ /8. In particular, to prove that the functor
(2.6.14) is an equivalence, it remains to show that it is fully faithful.

Before continuing with the proof, we recall the following two statements from [Vez19].

Proposition 2.6.17. Let R be an adic ring of principal ideal type and m1 € R a generator of an
ideal of definition. Let s = (s1,...,8y,) and t = (t1,...,t,) be two systems of coordinates, and
let P = (Py,...,P,) be an n-tuple of polynomials in R[s,t] with no constant term, i.e., such that
Pls=0,1=0 = (0,...,0). Assume also that det(0P;/0t})|s=0,1=0 generates an open ideal in R. Then,
there exists a unique n-tuple F = (Fy,...,F,) of formal power series in (R[x~'])[[s]] such that
P(s, F(s)) = 0. Moreover, for N large enough, the F;’s belong to the subring R[[7x~ s]].

Proof. This is a slight generalisation of [Vez19, Proposition A.1], and one can easily check that the
proof of loc. cit. still works in the present context. More precisely, instead of a Banach K-algebra, with
K a complete non-Archimedean field, as in loc. cit., we consider the Banach ring R[7~!'] endowed with
the norm described in the proof of Proposition 1.3.7. (Note that det(0P;/0t)|s=0, /=0 generates an open
ideal in R if and only if it is invertible in R[7~'].) O

The previous statement has the following generalisation. (See [Vez19, Proposition A.2].)

Corollary 2.6.18. Let R be an adic ring of principal ideal type and n € R a generator of an ideal of
definition. Let s = (s1,...,8n) and t = (t1,...,1t,) be two systems of coordinates, let a = (ay,...,ay)
and b = (by,...,by,) be two tuples of elements in R and let P = (Py,...,P,) be an n-tuple of
polynomialsin R[s,t] suchthat Pls—q 1=p = (0, ...,0). Assume also that det(0P; [0t ;) |s=qa, 1=p generates
an open ideal in R. Then, there exists a unique n-tuple F = (F\, ..., Fy) of formal power series in
(R[7™"D[[s — a]] such that P(s,F(s)) = 0. Moreover, for N large enough, the F;’s belong to the
subring R[[7~N (s — a)]].

‘We introduce some further notations.

Notation 2.6.19. We fix two n-torsion-free rig-smooth adic A 4,-algebras B, and C,,. For @ < ap, we
setBy = Ag®a, Bay/(0)™,Co =Aa®a, Cau/(0)™, X, = Spf(B,) and Y, = Spf(C,). Similarly,

<) <)

weset B=A @)A% Ba,/(0)%,C=A®a, Ca/(0)™, X = Spf(B) and Y = Spf(C). We also denote by

aq
’

B’,, B, and X/, as in Notation 2.6.15, and we define similarly C/,, C’, and Y/,. Moreover, we assume that

Boy = Ay (s, t)/(P)Sal
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with s = (s1,...,8,) and t = (71, ..., 1,) two systems of coordinates, and P = (Py, ..., P,) an n-tuple
of polynomials in A, [s, ¢] such that det(9P;/dt;) generates an open ideal of A .

Lemma 2.6.20. Given a morphism of formal schemes f Y — X, there exists an A'-homotopy
H: Al =Spf(C()) - X

from f = Hoiytoamap f = Hoiy such that f : Y — X descends to a unique map ', — X for
a < ag small enough.

Proof. Indeed, suppose that f corresponds to a morphism of adic A-algebras B — C given by s; — c¢;,
forl <i <m,andt; = dj, for 1 < j < n, where the ¢ = (c1,...,¢,n) and d = (dy,...,d,) are
tuples of elements of C satisfying P(c,d) = 0. Let F = (Fy,...,F,) be the n-tuple of power series
in C[7~'][[s — ¢]] associated by Corollary 2.6.18 to the n-tuple of polynomials P = (Py,...,P,)
(considered with coefficients in C via the map A,, — C) and their common zero (c,d). By the
same corollary, for ¢ = (¢1,...,¢,) an m-tuple of elements in A close enough to ¢, the expressions
Fi(c+ (¢ - ¢) - 1) are well-defined elements of C (), and the assignment

s—oc+(6-c)-1, t—>F(c+(E-¢)-1)

gives rise to a map of A-algebras B — C(t), and hence to a morphism H : A}d — X of formal schemes.
By construction, H o ig = f, and it remains to show that f = H oi; descends to a morphism Y/, — X,
for a well-chosen m-tuple ¢. (The uniqueness is clear since C;, — C is injective.) This is the case when
the ¢;’s belong to the dense subring C, = U, <4, Cg of C. Indeed, refining a, we may assume that the
¢;’s belong to Cy, . Consider the map Y7, — Sq, X A™ = Spf(A,(s)) induced by ¢. We have a rig-€tale
morphism Xy, — 84, X A™ and the morphism f Y — X gives rise to a section o of the rig-étale
projection Xy, XS gy xam, & Y — Y. Then f descends to a morphism Y/, — X, if and only if the section
o descends to a section of the rig-étale projection (X, X, xam, & dq) — Y5 That this is true follows

from Corollary 1.3.10. O
Corollary 2.6.21. Keep the notation as above. Fix a system of coordinates u = (uy,...,u,) for A"
Given a finite collection fi,..., fy in Homg(Y x A", X) we can find a collection Hy,...,Hy in

Homg (Y x A" x Al X) and some index @ < aq such that:

(1) Forall 1 < k < N, we have fy = Hy o iy and the map fk = Hj o iy descends to a unique map
Y, X A" — X, over S,.

2) If fx odi,e = frr odie for some 1 < k,k’ < N and some (i,e) € {1,...,r} x{0,1}, then
Hyodie=Hp od;e.

(3) If for some 1 < k < N and some y < aq the map fi o dy,; € Homg(Y x A™~1,X) comes from
Homg,, (13;, x A1 X,), then the homotopy Hy o d1,1 € Homg (Y X Ar-lx Al X) is constant, i.e.,
factors through the projection on'Y x A1,

Proof. Suppose that f; corresponds to a morphism of adic A-algebras B — C(u) given by (s,t)
(ck,dy), where cx = (ck1,---»Cikm) and dy = (dg1, . - ., dgn) are tuples of elements of C{u) satisfying
P(ck,dr) = 0. By Lemma 2.6.20, there are n-tuples of formal power series Fy = (Fki,...,Fin)
associated to the fi’s such that

(s,0) = (ck + (Ck —¢) - 7, Fi(cp + (6x — ci) - 1))

defines a morphism Hy : Y X B" X B! - X satisfying condition (1), for some @ < ag, when the ¢g;’s
are close enough to the c;’s and belong to the dense subring C{,(u) = U 4 <q, Co{u) of C{u).

It remains to explain how to choose the ¢ ’s so that the conditions (2) and (3) above are also satisfied.
To do so, we apply [Vez19, Proposition A.5] to the cg;’s. (This result of [Vez19] is stated for Banach
algebras over a non-Archimedean field and a sequence of complete subalgebras but holds more generally
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for Banach rings and a filtered family of complete subrings, and we apply it here to C[x~!] and the
family C’, [x~'], for @ < ap.) Thus, we may find elements &, € CZ,(u), which are arbitrary close to the
cki’s, and satisfying the following properties:

(2") If ciluj=e = Ck’|lu;=c for some 1 < k, k" < N and some (i,€) € {1,...,r} x {0, 1}, then éx|y,=¢
C~k'|u,—:e-
(3") Ifforsomel < k < N and some y < a, cly,=1 belongs to C;,<u2, Uy, then Ely =1 = Ckluy=1-

With these ¢;’s, it is easy to see that conditions (2) and (3) are satisfied. Indeed, suppose that fy od; ¢ =
fiw od; e forsome i € {1,...,r} and € € {0, 1}. This means that cg|y=e = Ci'lu=e and di|y=e =
dir|u;=e; we denote by ¢ and d their respective common values. This implies that both F|,,- and
F|u;=e are two n-tuples of formal power series F with coefficients in C{uo, . . ., u,) converging around
¢ and such that P(s, F(s)) = 0 and F (&) = d. By the uniqueness of such power series stated in Corollary
2.6.18, we conclude that they coincide. Moreover, by property (2’), we have ¢ily=e = Ci’|u;=e; We
denote by & the common value. It follows that

Fi(ck + (Gk = ck) * Dly=e = F(€+ (6= ¢) - 1) = Fr(cw + (= ci) - T)lo,=e

and thus Hy o d; « = Hy o d;, ¢, proving property (2). Property (3) follows immediately from property
(3’) and the definition of Hy. m]

Proof of Proposition 2.6.14. We split the argument into two steps.

Step 1
Consider the A!-localisation functor L, on the co-categories of presheaves of A-modules

PSh(FRigSm;; o/ (Sa)ai ) and PSh(FRigSmy; /8 A).

For a presheaf F of A-modules, L, (F) is given by the colimit of the simplicial presheaf Hom(A®, &),
where A" refers to the r-th algebraic simplex and

Hom(A", F)(=) = F((=){uo, . . ., ur)/(uo + -+ - + uy = 1)).

Indeed, the map F — colim Hom(A*®, F) is an A!-equivalence by [MV99, §2.3, Corollary 3.8]. On the
other hand, using [M'V99, §2.3, Proposition 3.4] and the fact that the endofunctor Hom(A L —) preserves
colimits, we have equivalences

colimHom(A®, F) = colim Hom(A®* x A', F) ~ Hom(A'!, colim Hom(A*®, F))

showing that colim Hom(A*®, J) is A'-local.
With (X4)a<a, and (Ya)a<a, as in Notation 2.6.19, we claim that the natural map

(LarA((Xa)azan)) (Jadazay) = (LarAX))(Y) (45)

is an equivalence. By the commutation of colimits with tensor products, it is enough to prove this
when A is the sphere spectrum. (Here we use the explicit model for the A'-localisation recalled above.)
Similarly, since tensoring with the Eilenberg—Mac Lane spectrum of Z is conservative on connective
spectra, we reduce to prove this when A is the (Eilenberg—Mac Lane spectrum associated to the) ring Z.
In this case, we may use another model for the A!-localisation functor L1, namely the one taking F to
the normalised complex associated to the cubical presheaf of complexes of abelian groups Hom(A®, F),
where, as above, Hom(A”, F)(-) = F((-){uy,...,ur)). (This is proven by adapting the method used
for the simplicial presheaf Hom(A*®, F). See also [Ayo14b, Théoreme 2.23] for a closely related result.)
Thus, we are reduced to showing that the morphism of cubical abelian groups

(Hom(A®, Z((Xa)azar))) (Ya)a<a,) — (Hom(A®, Z(X)))(Y) (46)
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induces an isomorphism on the associated normalised complexes. This follows from Corollary 2.6.21
by arguing as in [Vez19, Proposition 4.2]. Note that, since Z((X4)a<a,) iS considered as a presheaf
on FRigSm;f’ or /(8a)a- the elements of the left-hand side of equation (46) are linear combinations of
(8 o)o-morphisms of formal pro-schemes from (Y, X A")y<q, 10 (Xo)a<aq-

Step 2
Let ¢ : (FRigSmy |,
rise to the adjunction

/8, rignis) — (FRigSm;f’ - /(84 )a,rignis) be the premorphism of sites that gives

Prnor - RIESHLT ((Sa)as A) 2 RigSHL(S; A) © fmot, -
Our goal is to show that ¢ . is an equivalence, and by Remark 2.6.16 it remains to see that ¢ is fully
faithful. We will prove that the unit morphism id — @mo, «@},¢ is an equivalence. In order to do so, we
note that the functor

¢. : PSh(FRigSm,; /8;A) — PSh(FRigSm;f, pr/(Sa)a;/\)

af, pr
preserves (A!, rignis)-local equivalences. Preservation of rignis-local equivalences follows immediately
from Remark 2.6.10. Preservation of A'-local equivalences is an easy consequence of the fact that A is
an interval. (This is used to construct an explicit A!-homotopy between the identity of ¢, A((=) x Al)
and the endomorphism induced by the zero section.) As a consequence, we are left to show that the
morphism F — ¢.¢*F is an (Al, rignis)-local equivalence for all presheaves of A-modules J on
FRigSm;f, or /(84)a-. Since ¢* and ¢, commute with colimits and since (A, rignis)-local equivalences
are preserved by colimits, we may assume that I = A((X g )a <a,) With (Xa)a<a, as in Notation 2.6.19.
In this case, the morphism F — ¢.¢*JF can be rewritten as follows:

A((xa)agao) — ¢.A(X). 47

We claim that this morphism is an A'-local equivalence. Indeed, if we apply L, to the morphism (47)
and if we evaluate at an object (Y 4)a<a, of FRigSm’, or /(84)a» We get precisely the map (45) which
we know to be an equivalence. O

2.7. Quasi-compact base change

We prove here the so-called quasi-compact base change theorem for rigid analytic motives. This will
be obtained as an application of the continuity property for RigSH(Teﬁ" A)(—;A) proved in Theorem
2.5.1. Our quasi-compact base change theorem can be compared with [Hub96, Proposition 4.4.1] and
[dJvdP96, Theorems 5.3.1].

Theorem 2.7.1 (Quasi-compact base change). Consider a Cartesian square of rigid analytic spaces

’

y Sy
Il
, 8
X —X
with f quasi-compact and quasi-separated. Let T € {nis, ét}, and assume one of the following two

alternatives.

(1) We work in the nonhypercomplete case. When T is the étale topology, we assume furthermore that
A is eventually coconnective.

(2) We work in the hypercomplete case, and X, X', Y and Y’ are (A, 7)-admissible. When T is the étale
topology, we assume furthermore one of the following conditions:
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o A is eventually coconnective;

o Locally on X and X’, one can find formal models X and X' such that X' is a limit of a cofiltered
inverse system of finite type formal X-schemes (X y)q with affine transition morphisms and
such that the numbers pved , (Xo©) are bounded independently of a. (For example, this holds

if g is locally of finite type.)

Then, the commutative square

RigSH ™" (X; A) — s RigSH™ V) (v; A)

RigSH™ Y (x7: A) —L s RigSHE™ Y (v7; )

is right adjointable, i.e., the natural transformation g* o f, — f! o g’* is an equivalence.

Proof. Using Proposition 2.2.1(3), the problem is local on X and X’. In particular, we may assume that
X and X’ are quasi-compact and quasi-separated. This implies the same for ¥ and Y’. We split the proof
into two parts. In the first part, we assume that g is of finite type, and in the second part, we explain how
to remove this assumption.

Part 1

Here we assume that g is of finite type. Since the problem is local on X and X’, we may assume that
g factors as a closed immersion followed by a smooth morphism. Using the base change theorem for
smooth morphisms of Proposition 2.2.1, we reduce to the case where g is a closed immersion. Thus, we
may assume that X = Spf(A)"€ and X’ = Spf(A’)"¢, where A is an adic ring of principal ideal type and
A’ a quotient of A by a closed saturated ideal I C A. If 7 € A generates an ideal of definition, then A’ is
the filtered colimit in the category of adic rings of the A-algebras A; n = A(J/x"V), where N € N and
J C I is a finitely generated ideal.

Set X = Spf(A) and X’ = Spf(A’). Choose a formal model Y of Y which is a formal X-scheme and
setY =Y xx X'. Let K be the indexing category of the filtered inductive system (A )7, n, and write
‘a’ instead of *J, N’ for the objects of K. We denote by o € K the initial object (corresponding to N = 0
and J = (0)). Set X, = Spf(Aq), Yo = Y Xx Xo, Xo = Xof and ¥, = Yg, For @ — B in K, we have
Cartesian squares of rigid analytic spaces

85a
Yg —— Y,

|# g |1

X5 —2%5 X,

where the horizontal arrows are open immersions. (Note that f, = f.) We deduce commutative squares
of co-categories

RigSHE™ V) (X,: A) 27 RigSHE™ Y (Y, A) 48)

J/g;?a J/gga

15 \
RigSH™ "V (X4: A) —— RigSH™ ") (¥; A).

In fact, we have a functor K — Fun(Al,PrI;)) sending @ € K to f,, and @ — ( to the commutative
square (48). Moreover, since the squares (48) are right adjointable by Proposition 2.2.1(3), this functor
factors through the sub-co-category
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FunRAd(Al, Prl(:)) = Fun(Al, Prltz)) N FunRAd(Al, CATw),

where FunRAd(A I CAT.,) is the oco-category introduced in [Lurl7, Definition 4.7.4.16].

Consider a colimit diagram K> — Fun(A', PrI;U) extending the one described above. Since all the
oco-categories we are considering are stable, Lemma 2.7.2 below implies that this diagram factors also
through the sub-co-category FunRA4(A!, Prl ). Evaluating the functor K> — Fun(A', Prl) at the edge
0 — oo, where oo € K* is the cone point, we obtain a commutative square in Pr];,

RigSH™ " (x,:A) —— RigSH™ " (v,; A)

; * ; r
J/cohma Soo Jcohma 8o

F limg (: . . [
colim RigSH(Teﬂ’A) (Xa3 N) colime / colim ngSH(Teﬂ’A) (Ya3 A)
a a

which is right adjointable. By Theorem 2.5.1, this square is equivalent to the one in the statement.

Part 2
‘We now assume that g is not necessarily of finite type. We may assume that g is induced by a morphism
Spf(A’) — Spf(A) of affine formal schemes. Set X = Spf(A) and X’ = Spf(A’). Let Y be a quasi-
compact and quasi-separated formal X-scheme such that ¥ = Y€ and let Y’ = Y xy X’ so that
Ymie =y’ Write A’ as a filtered colimit A’ = colim, A, of finitely generated adic A-algebras A,.
Setalso X = Spf(Ag), Yo = Y Xx X, Xo = Xf and Y, = Y45, If 7 is the étale topology and A is not
eventually coconnective, we may assume that the numbers pved, (X)) are bounded independently of a.
As in the first part of the proof, we have a diagram K — Fun(Al,Pr%)) sending @ — S to squares
of the form (48). Since the morphisms gg, : Xg — X, are of finite type, these squares are right
adjointable as shown in the first part of the proof. The result follows again by considering a colimit
diagram K> — Fun(Al, Prll;), and using Lemma 2.7.2 and Theorem 2.5.1. O

The following lemma, which was used in the proof of Theorem 2.7.1, is well-known. We include
a proof for completeness. (Recall that we are using the notation Fun®A¢ following [Lurl7, Definition
4.7.4.16].)

Lemma 2.7.2. Let K be a simplicial set. Let C: K> > Fun(A', Pr%) be a colimit diagram, and let C be

its restriction to K. Assume the following conditions:

(1) @ factors through Fun®44(A!, Pr’) = Fun(A', Pr*) N Fun®A4(A!, CAT,,);

(2) For every s € K, the right adjoint to the functor f; : Cy(s) — Ci(s), associated to s by C, is
colimit-preserving.

(Note that the second condition is satisfied if f; is compact-preserving and the co-categories Co(s) and
@1 (s) are stable and compactly generated.) Then, C also factors through FunRA4 (A, Pr™). Moreover,
the resulting map K> — Fun®A (A1 PrY) is a colimit diagram.

Proof. Using the equivalence Pr™ ~ (Pr®)°P, we deduce a limit diagram
€ : (K°?)Y = Fun(A P, PR).

We denote by €’ the restriction of € to K°. Applying € and €’ to an edge e : s — ¢ in K”, we get the
following commutative squares of co-categories

Cols) —2 €, (s) Cols) <2 €,(s)
C(e) : J l and C'(e) : T T
Colr) —2— €,(1) Colr) +E— €, (1),
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where the functors in the second square are the right adjoints to the functors in the first square. By
condition (2) the functors gy admit right adjoints. Moreover, the first square C(e) is right adjointable if
and only if the square C’(e) is right adjointable. We can then reformulate the problem as follows: If €’
factors through

FunRAY(A L PrRY = Fun(A %P, PrR) N FunRAd(A %P CATL,),

then the same holds true for €’ and the resulting map is a limit diagram. Since limits in Pr® are computed
in CAT (by [Lur09, Theorem 5.5.3.18]), this follows from [Lurl7, Corollary 4.7.4.18(2)]. m]

Remark 2.7.3. Keep the notations and assumptions of Theorem 2.7.1. The commutative square

Shv™ (X: A) — 5 Shv™ (7 A)

)

Shv® (x7; A) —L 5 shv™ (7/; A)

is also right adjointable. This is proven by the same method: Instead of using Theorem 2.5.1, we use the
much easier Corollary 2.5.10. There is also an unstable version of this result, asserting that

Shvi™ (X) —— shv! (v)

o

shv® (x") L5 s (v7)

isright adjointable under some assumptions. This holds for instance when 7 is the Nisnevich topology and
X, X’, Y and Y’ locally of finite Krull dimension. When 7 is the étale topology, we have a weaker result:
Under the same assumption on the Krull dimensions, the base change morphism g* o f, — f/o g’ isan
isomorphism when evaluated at truncated étale sheaves and, in particular, at étale sheaves of sets. A proof
of this can be obtained by adapting the proof of Theorem 2.7.1. Indeed, Corollary 2.5.10 is still true for the
oo-categories of n-truncated S-valued sheaves Shv;(—)<,. (In this case, there is no distinction between
sheaves and hypersheaves.) Similarly, if 2 : T — S is a quasi-compact morphism between rigid analytic
spaces locally of finite Krull dimension, the associated functor A* : Shv;(Et/S)<, — Shv.(Et/T)<,
belongs to Prl .

2.8. Stalks

In this subsection, we determine under some mild hypotheses the stalks of RigSH(Teff’ ~ (=; A), which
is a 7-(hyper)sheaf by Theorem 2.3.4. We then use this to generalise Theorem 2.5.1. We start with a
general fact on presheaves with values in a compactly generated co-category.

Proposition 2.8.1. Let (C, T) be a site having enough points, and let V be a compactly generated oo-
category. For a morphism f : F — G in PSh(C;'V), the following conditions are equivalent:

(1) Lo (f) : Lo (F) = Lo (9) is an equivalence in Shv’(C;V);
) fx: Fx — Gy is an equivalence in 'V for all x in a conservative family of points of (C, T).

Proof. By [Drel8, Proposition 2.5], condition (1) holds if and only if, for all compact objects A € V,
the maps of presheaves of spaces

Mapy, (A, f) : Mapy, (A, F) — Mapy (A, 9)
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induce equivalences after T-hypersheafification. This is the case if and only if for every x as in (2), the
induced maps on stalks

Mapy (A, f)x : Mapy (A, F)x — Mapy (A, G)x.

are equivalences. Since the A’s are compact and stalks are computed by filtered colimits, the above maps
are equivalent to

Mapy, (A, fx) : Mapy, (A, Fx) — Mapy (A, Gx).

Since 'V is compactly generated and A varies among all compact objects, our condition is equivalent to
asking that the maps f; : Fx — G, are equivalences as needed. O

Later we use Proposition 2.8.1 with V = Prl- . This is indeed possible by Proposition 2.8.4 below,
whose proof relies on two technical lemmas. The first one is a variant of the characterisation of
presentability given in [Lur(09, Theorem 5.5.1.1(6)] which is certainly well-known. We provide an
argument because we couldn’t find a reference.

Lemma 2.8.2. Let C be a locally small co-category admitting small colimits. Assume that there exists
a regular cardinal k and a set S C C of k-compact objects such that C coincides with its smallest full
sub-oo-category containing S and stable under colimits. Then C is k-compactly generated (in the sense
of [Lur09, Definition 5.5.7.1]).

Proof. The difference with [Lur09, Theorem 5.5.1.1(6)] is that we do not assume that every object of C
is a colimit of a diagram with values in the full sub-co-category spanned by S.

Let € c € be the smallest sub-co-category of € containing S and stable under «-small colimits. The
oo-category € can be constructed from S by transfinite induction as follows. Let ¢ be the full sub-co-
category of C spanned by S, and for an ordinal v > 0, let £, be the full sub-co-category of € spanned
by colimits of k-small diagrams in (J,., €,. Then & = U, ., €,. This shows that € is essentially
small and that every object of € is k-compact (by [Lur09, Corollary 5.3.4.15]). By [Lur09, Proposition
5.3.5.11], the inclusion & — € extends uniquely to a functor ¢ : Ind,(€) — € preserving «-filtered
colimits, and this functor is fully faithful. In fact, by [Lur09, Proposition 5.3.6.2 and Example 5.3.6.8],
Ind, (€) admits small colimits and the functor ¢ is colimit-preserving. Using that the essential image
of ¢ contains S, we deduce that ¢ is an equivalence of co-categories. Since Ind, (&) is presentable by
[Lur09, Theorem 5.5.1.1], this finishes the proof. (Note that Ind, (€) is «x-accessible by definition; see
[Lur09, Definition 5.4.2.1].) ]

Lemma 2.8.3. Let C and D be oo-categories such that C is compactly generated and D admits small
colimits. Assume that there is a functor G : D — C with the following properties:

(1) It admits a left adjoint;
(2) It is conservative;
(3) It commutes with filtered colimits.

Then D is compactly generated. Moreover, if F is a left adjoint to G, then F takes a set of compact
generators of C to a set of compact generators of D.

Proof. Since G commutes with filtered colimits, the functor F takes a compact object of C to a compact
object of D. Let Gy be the full sub-co-category of € spanned by compact objects, and let D’ c D
be the smallest sub-co-category containing F(Cp) and stable under colimits. By Lemma 2.8.2, D’ is
compactly generated since Cy is essentially small. Thus, it suffices to show that the inclusion functor
U : D’ — Dis an equivalence. By [Lur09, Corollary 5.5.2.9 & Remark 5.5.2.10], the functor U admits
aright adjoint V, and it is enough to show that V' is conservative. This follows from the hypothesis that
G is conservative. Indeed, we have G ~ G’ o V where G’ is right adjoint to the functor F’ : C — D’
induced by F (which exists by [Lur09, Corollary 5.5.2.9]). O
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Proposition 2.8.4. The co-category Pr% is compactly generated.

Proof. This is probably well-known, but we couldn’t find a reference. We include a proof here for
completeness. Denote by Cat™ %™ the sub-co-category of Cate whose objects are the idempotent
complete small co-categories admitting finite colimits and whose morphisms are the right exact functors.

By [Lurl7, Lemma 5.3.2.9(1)], the functor € + Ind, (C) induces an equivalence of oco-categories

between Cat™=™ ™ and Prl Thus, it is enough to show that Cat:™ '™ is compactly generated. Since
Prl admits small colimits by [Lur09, Proposition 5.5.7.6], the same is true for Cat™4em which is

moreover obviously locally small.

We will show that Cat’™ %™ js compactly generated by applying Lemma 2.8.3 to the inclusion
functor Cat'™ %™ _, Cat,,. First, note that Cat,, is compactly generated. Indeed, Caty, is the oco-
category associated to the combinatorial simplicial model category Set; of marked simplicial sets
where the cofibrations are generated by monomorphisms with compact domain and codomain and
where fibrant objects are stable by filtered colimits. (See [Lur09, Propositions 3.1.3.7 & 3.1.4.1, &
Theorem 3.1.5.1].) We now check that the inclusion functor Cat™ %™ _ Cat,, satisfies properties
(1)-(3) of Lemma 2.8.3. Property (1) follows from [Lur09, Corollary 5.3.6.10]. Property (2) is obvious:
an inverse of a right exact equivalence of co-categories is right exact. For property (3), we need to show
the following: given a filtered diagram in Cat™* "*™ its colimit computed in Cat, admits finite colimits
and is idempotent complete. The first property follows from [Lur(09, Proposition 5.5.7.11]. The second

property follows from [Lur09, Corollary 4.4.5.21].¢ O
We record the following lemma for later use.

Lemma 2.8.5. Let (C, 1) be a site, and let F : C°° — CAT, be a presheaf on C. Set € = limew F. (If
C admits a final object %, then & ~ F(x).) Given an object X € C, we denote by A — Ax the obvious
functor & — F(X).

(1) Assume that F is a v-(hyper)sheaf. Then, for A,B € &, the presheaf on C, given informally by
X — Mapy x (Ax, Bx), is a T-(hyper)sheaf.

(2) Assume that F is a T-hypersheaf and that the limit diagram (C~)°? — CATe extending F factors
through Pr%. Assume also that (C, T) admits a conservative family of points (x;);. Then, the family
of functors (& — F,);, where the stalks Fx, are computed in Pr- is conservative.

Proof. We denoteby M : (CATw)gp1; — S the copresheaf corepresented by AA' — A'. The functor M
commutes with limits and admits the following informal description. It sends an co-category Q together
with a functor ¢ : dA! — Q to the mapping space Mapg (g(0), g(1)). This is indeed a consequence of
[DS11, Proposition 1.2].

To give a precise construction of the presheaf described informally in (1), we consider € as an object
of (CATw)sa1, using the functor e : AA' — & mapping 0 to A and 1 to B. By the definition of &, the
presheaf J lifts to a (CAT.)e /-valued presheaf 5. The functor e gives rise to a functor

(CATCX,)g/ — (CATCX,)@AI/,

and we denote by F”” the (CATw)ga1,-valued presheaf obtained from F” by composing with this functor.
By construction, F” is a lift of F admitting the following informal description. It sends an object X € C
to the co-category F(X) together with the functor JA' — F(X) mapping 0 to Ax and 1 to Bx. The
presheaf X — Mapff(X)(Ax, By) in (1) is then defined to be M o F”. That said, the conclusion of
assertion (1) is now clear. Indeed, the projection (CATw)ga1, — CATe preserves and detects limits
by [Lur09, Proposition 1.2.13.8] and, as mentioned above, the functor M is limit-preserving. Thus, the
conclusion follows from Remark 2.3.3(1).

Given a point x of (C, 7), we denote by A — A, the functor € — F. To prove the second assertion,
we fix a morphism f : A — B in & inducing equivalences A,, =~ By, for all i. We need to prove that f

¢Corollary 4.4.5.21 can be found in the electronic version of [Lur09] on the author’s webpage, but not in the published version.
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is an equivalence. Since € is compactly generated, it is enough to show that f induces an equivalence
Map. (C,A) — Map¢(C, B) for every compact object C € £. The compositions with the fx’s, for
X € €, induce a morphism of presheaves

(X = Mapg (x)(Cx, Ax)) — (X — Mapg(x)(Cx, Bx)), (49)

whose construction we leave to the reader. By assertion (1), this is actually a morphism of T-hypersheaves.
Thus, to conclude, it is enough to show that the morphism (49) induces equivalences on stalks at x; for
every i. Since C is compact, the stalk at x; of this morphism is given by the map Map;_(Cy,,Ayx;) —
Mapg (Cy;, By;) which is indeed an equivalence since Ay, ~ By, . L o

By Theorem 2.3 .4, the Pr™-valued presheaf RigSHE,eﬁ)’ "(=:A) has T-hyperdescent. Therefore, it is
particularly useful to determine its stalks. The next theorem shows that, under some mild hypotheses,
these stalks can also be understood as co-categories of rigid analytic motives over rigid points (in the
sense of Definition 1.4.22).

Theorem 2.8.6. Let S be a rigid analytic space, and let’ s — S be an algebraic rigid point of S. (See
Remark 1.4.25.) Let T € {nis, ét}, and assume one of the following two alternatives.

(1) We work in the nonhypercomplete case.
(2) We work in the hypercomplete case, and S is (A, T)-admissible.

Then there is an equivalence of co-categories
RigSH'*™ " (—; A)s ~ RigSH ™V (5; A),

where the left-hand side is the stalk of RigSH(Teff’ A)(—;A) at’s, i.e., the colimit, taken in Pr", of the
diagram (5 — U — S) — RigSH™ " (U; A) with U € Et/S.

Proof. We need to show that the obvious functor

colim RigSH™ " (U; A) — RigSH™ " (5; A)
s->U—-S
is an equivalence. The question being local on § around the image of s, we may assume that S is quasi-
compact and quasi-separated. In particular, S admits a formal model 8. The functor

(Spf(k*(5)) > U— 8) > (5 - U™ - ),

with U affine and rig-étale over 8, is cofinal. Moreover, by Lemma 1.4.26, we have a canonical isomor-
phism of formal schemes

npEes .
Spf(K (S)) a Spf(K*(IEI)I{LUHS -

The result follows now from Theorem 2.5.1. Indeed, if S is (A, 7)-admissible, then so are s and every

étale rigid analytic S-space U. (For s, use that the absolute Galois group of k() is a closed subgroup of

the absolute Galois group of x(s); for U, use Corollary 2.4.17.) Moreover, by the proof of Lemma 2.4.16,

we have the inequality pved, (U) < pved, (S), and since S is quasi-compact, the (A, 7)-admissibility of

S implies that pved, (S) is finite. m|

Remark 2.8.7. Theorem 2.8.6 applies in the case of a rigid point s — S associated to a point s € |S|. In
this case, the stalk RigSHfff’ 7 (—; A)s has a simpler description: It is the colimit, taken in Pr", of the
diagram U +— RigSH(Teﬂ’ A)(U ; \), where U runs over the open neighbourhoods U C S of s. Indeed,
every étale neighbourhood s — 7' — S of s in S can be refined by an open neighbourhood. (This follows
from Corollary 1.3.10 and Lemma 1.4.26(1).) Similarly, if s — S is a nis-geometric rigid point as in
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Construction 1.4.27(1), we may restrict in the description of the stalk in Theorem 2.8.6 to those étale
neighbourhoods U admitting good reduction.

Corollary 2.8.8. Let S be a rigid analytic space. Assume one of the following two alternatives.

(1) We work in the nonhypercomplete case, and S is locally of finite Krull dimension. When 7 is the
étale topology, we assume furthermore that A\ is eventually coconnective
(2) We work in the hypercomplete case, and S is (A, T)-admissible.

Then, the functors
RigSH™ " (5; A) — RigSH™" (5; A),

for s € S, are jointly conservative.

Proof. Let Op/S denote the category of open subspaces of S endowed with the analytic topology.
By Theorem 2.3.4, RigSH(Teﬁ’ A (—; A) is a hypersheaf on Op/S. (In the nonhypercomplete case, we
use [CM21, Theorem 3.12] and [Lur09, Corollary 7.2.1.12] which insure that a sheaf on Op/S is
automatically a hypersheaf.) Moreover, by Proposition 2.4.20, this presheaf takes values in Pr(Lu. The
result follows now from Lemma 2.8.5 and Theorem 2.8.6. O

Remark 2.8.9. The algebraic analogue of Corollary 2.8.8 is also true: Given a scheme S and assuming
one of the alternatives of this corollary, the functors SH(Teﬁ’ N (S;A) — SH(Teff’ N (s;A), for s € |S], are
jointly conservative. This can be deduced from Proposition 2.2.3 by arguing as in the proof of [Hoy18,
Corollary 14].

Our next goal is to upgrade Theorem 2.5.1 to a motivic analogue of [Hub96, Proposition 2.4.4];
see Theorem 2.8.15 below. We first introduce, following [Hub96, Definition 2.4.2 & Remark 2.4.5], a
notion of weak limit in the category of rigid analytic spaces.

Definition 2.8.10. Let (S, ), be a cofiltered inverse system of rigid analytic spaces, with quasi-compact
and quasi-separated transition maps. Let S be a rigid analytic space endowed with a map of pro-objects
(fa)a : S = (Sa)a, i.e., with an element ( f,), € lim, Hom(S, S,). We say that S is a weak limit of
(S4)q and write S ~ lim,, S, if the following two conditions are satisfied:

(1) The map |S| — limg |S| is a homeomorphism;
(2) Forevery s € |S| with images s, € |S¢|, the morphism

colim k™ (s4) — «*(s),
a

where the colimit is taken in the category of adic rings, is an isomorphism.

Example 2.8.11. Let (8,), be a cofiltered inverse system of formal schemes with affine transition maps,
and let $ = lim, 84 be its limit. Set S = 8¢ and S, = 8,°. Then S is a weak limit of (S ). Indeed,
condition (1) follows from commutation of limits with limits; see Notation 1.1.11. The point is that any
admissible blowup of § can be obtained as the strict transform of & with respect to an admissible blowup
of an 8, for some «@. Condition (2) follows from Lemma 1.4.26(1).

Example 2.8.12. Let X be a rigid analytic space and Z C X a closed subspace. Let (U, ), be an inverse
system of open neighbourhoods of Z in X such that, locally at every point of Z, this inverse system is
cofinal in the system of all neighbourhoods of Z in X. (When X is quasi-compact, this is equivalent to
saying that (U, ), is cofinal in the system of all neighbourhoods of Z in X.) Then, Z is a weak limit of
(Uq)q- Indeed, condition (2) is obvious, and for condition (1), we need to show that |Z| = (N, |Ual.
This follows easily from the fact that | X| is a valuative topological space (in the sense of [FK 18, Chapter
0, Definition 2.3.1]) and that |Z| C |X]| is stable by generisation.
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The following lemma can be compared with [Hub96, Remark 2.4.3(i)]. See also the proof of [Sch12,
Proposition 7.16].

Lemma 2.8.13. Keep the notation as in Definition 2.8.10, and consider the following variants of
conditions (1) and (2):

(1) The fo’s are quasi-compact and quasi-separated, and the map |S| — limg, |S,| is a bijection;
(2") Forevery s € |S| with images s o € |Sq/|, the induced morphism of fields

colimk(sq) — «(s)
a

has dense image.

Then, conditions (2) and (2’) are equivalent. Moreover, if condition (2) is satisfied, then conditions (1)
and (1’) are equivalent.

Proof. We identify «*(s,) with a subring of «*(s) and (s, ) with a subfield of x(s). We may assume
that there is an element 7 € «*(s) which belongs to all the «*(s,)’s and generates an ideal of definition
in each one of them. If (2) is satisfied, then «* () is the w-adic completion of | J,, «*(s4), which implies
that |, k(so) is dense in «(s). Conversely, if (2) is satisfied, then «*(s) is the Hausdorff completion
of k*(s) N U, k(s«). Then condition (2) follows from the following equalities 7™ (s) N U, k(5a) =
U " k" (54) which are easily checked using the valuation on «(s).

Clearly, (1) implies (1”). We next assume that (2) is satisfied and show that (1”) implies (1). Using
that the f,’s and the transition morphisms of the inverse system (S,), are quasi-compact and quasi-
separated, we may reduce to the case where S and all the S, ’s are quasi-compact and quasi-separated. By
[Sta20, Lemma 09XU], it is then enough to show that the bijection |S| =~ lim,, |S| detects generisations.
Given s € |S| with images s, € |S|, the generisations of s are the points of Spf(«*(s)) while the
generisations of (s ), are the points of lim, Spf(«*(s)). Thus, condition (2) implies that f induces a
bijection between the generisations of s and those of (54 )q- O

The following can be compared with [Hub96, Remark 2.4.3(ii)] and [Sch12, Proposition 7.16].

Lemma 2.8.14. Let (Sy)q be a cofiltered inverse system of rigid analytic spaces, with quasi-compact
and quasi-separated transition maps and admitting a weak limit S. Let X be a rigid analytic S o,-space
Jor some index ap. Then X XS aq S is a weak limit of (X XS aq Sa)a<ap-

Proof. We reduce easily to the case where S, the S,’s and X are quasi-compact and quasi-separated.
We will check that condition (1) of Lemma 2.8.13 and condition (2) of Definition 2.8.10 are satisfied
by the maps X Xs, § — X Xg, Sa, for @ < ag. A point of | X XS0 S| corresponds to a point s € |S]|
and a point of |X Xg, s| mapping to the closed point of |s|. Using a similar description for the points
of the | X XS Sal’s, condition (1”) and (2) follow from the following assertion: Given s € |S| with
images s, € |Sql, X Xs,, § 18 @ weak limit of (X XS S)a<ay- To prove this assertion, choose a
formal model X — 84, of X — S, and use Example 2.8.11 and the isomorphism of formal schemes
X Xs,, Sp(k*(s)) = limg<q, X Xs,, SP(k*(50)). m]

Theorem 2.8.15. Let (S, )q be a cofiltered inverse system of rigid analytic spaces, with quasi-compact
and quasi-separated transition maps and admitting a weak limit S. Let T € {nis, ét}, and assume one of
the following two alternatives.

g

(1) We work in the nonhypercomplete case, and S and the S, ’s are locally of finite Krull dimension.
When 1 is the étale topology, we assume furthermore that A is eventually coconnective.

(2) We work in the hypercomplete case, and S andthe S ,’s are (A, T)-admissible (see Definition 2.4.14).
When 1 is the étale topology, we assume furthermore that A is eventually coconnective or that, for
every s € |S| with images s, € |Sql|, the A-cohomological dimensions of the residue fields x(sy)
are bounded independently of .

https://doi.org/10.1017/fms.2022.55 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.55

Forum of Mathematics, Sigma 67

Then, the obvious functor

colim RigSH™ Y (S ,: A) — RigSH™ Y (5; A), (50)
a

where the colimit is taken in Pr, is an equivalence.

Proof. LetU,g,,« — Saq, be ahypercover of S, in the analytic topology with Uy, , a disjoint union of a
family (U, n, i)ier, of open subspaces of Sq,. Set Uq, n,i = Uy, n,i XS Seand Up, i = Ugg, n,i XS0 S.
We have hypercovers Uy, o — So and Us — S with Uy, = [;¢;, Ua,n,i and similarly for U,. By
[Lurl7, Proposition 4.7.4.19], there is an equivalence of co-categories

colim lim ﬂRigSHf“’“(Ua,n, sA) = lim co}timRigSH(fff’A)(Ua,n, sA). (5D
el,

a [n]eAi » [n]EAiEI,,

The right adjointability of the squares that is needed for [Lurl7, Proposition 4.7.4.19] holds by the base
change theorem for open immersions, which is a special case of Proposition 2.2.1(3). The presheaf
RigSH(Teff’ A (—; A) admits descent for the hypercovers U, — S and Uy, o — S, by Theorem 2.3.4. (In
the nonhypercomplete case, we use the assumption that S and the S, ’s have locally finite Krull dimension
so that descent implies hyperdescent by [CM21, Theorem 3.12] and [Lur09, Corollary 7.2.1.12].)
Therefore, the equivalence (51) shows that it is enough to prove the theorem for the inverse systems
(Ua, n,i)a<ay- In particular, we may assume that the S, ’s are quasi-compact and quasi-separated.

Denote by Op%°®/S the category of quasi-compact and quasi-separated open subspaces of S and
similarly for other rigid analytic spaces. Given that Opi°®/S = colim, Op%%/S,,, there exists a Pr-
valued presheaf R on Op%°4/S given by

R(U) = colim RigSH™ " (U,; A)
azaq

for any Uy, € Op¥¥ /Sy, such that U = Uy, X$q, S- (As usual, we set Uy = Uy, XS4, Sa-) Moreover,
we have a morphism of Pr--valued presheaves

¢ : R — RigSHE™ " (= A)

on Op°®/S. Since S belongs to Op9°® /S, it suffices to show that ¢ is an equivalence of presheaves. We
will achieve this by showing the following two properties:

(1) R and RigSH(fff’ A (—; A) are hypersheaves on Op4°® /S for the analytic topology;
(2) ¢ induces an equivalence on stalks for the analytic topology at every point s € |S|.

This suffices indeed by Propositions 2.8.1 and 2.8.4 since the presheaves R and RigSH(TeH’ ) (=;A) on
Op%°9 /S take values in Prl by Proposition 2.4.22.

First, we prove (1). That RigSH(Teff’ M (—;A) is a hypersheaf on Op%°4® /S was mentioned above. To
handle the case of R, we use again [CM21, Theorem 3.12] and [Lur(9, Corollary 7.2.1.12] which insure
that a sheaf on Op%°®*/S§ is automatically a hypersheaf. Thus, it is enough to show that R admits descent
for truncated hypercovers U, in Op°%*/S. We may assume that U_; = S. Every such hypercover is the
inverse image of a truncated hypercover Uy, o With Uy, -1 = S4,. We may then use the equivalence
(51) to conclude.

Next, we prove (2). Fix s € |S| with images s, € |So|. Since every quasi-compact and quasi-
separated open neighbourhood of s is the inverse image of a quasi-compact and quasi-separated open
neighbourhood of s, for @ small enough, the functor ¢, can be rewritten as follows:

colim RigSH'*™ A)(—;1\)Sa — RigSH™ M (—; A);.
a
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Using Theorem 2.8.6 (and Remark 2.8.7), this functor is equivalent to
co(llim RigSH(Teff’ n ($a;\) — RigSH(Teff’ A (s5M).
By Theorem 2.5.1, the latter is an equivalence. O

2.9. (Semi-)separatedness

In this subsection, we discuss two basic properties of the functor RigSH(TeH’ A)(—; A), namely semi-
separatedness and separatedness.

Definition 2.9.1. Let ¢ : X’ — X be a morphism of rigid analytic spaces.

(1) We say that e is radicial if |e| : |X’| — |X| is injective, and for every x’ € |X’| with image x € |X]|,
the residue field x(x”) contains a dense purely inseparable extension of x(x).

(2) We say that e is a universal homeomorphism if it is quasi-compact, quasi-separated, surjective and
radicial. (See Remark 2.9.2 below.)

Remark 2.9.2.

(1) Radicial morphisms and universal homeomorphisms are stable under base change.

(2) If e : X’ — X is a universal homeomorphism, then |e| : |X’| — |X]| is a quasi-compact and
quasi-separated bijection which detects generisation. By [Sta20, Lemma 09XU], this implies that
le| : |X’| — |X| is a homeomorphism of topological spaces. Moreover, by (1), this property is
preserved by base change, which explains our terminology.

(3) A morphism of schemes e : X’ — X is called a universal homeomorphism if every base change
of e induces a homeomorphism on the underlying topological spaces. By [Gro67, Chapitre IV,
Corollaire 18.12.13], this is equivalent to saying that e is entire, surjective and radicial.

Lemma 2.9.3. Let ¢ : X’ — X be a universal homeomorphism of rigid analytic spaces. The induced
morphisme : (Bt/X’, 1) — (Et/X, 7) is an equivalence of sites, i.e., induces an equivalence between the
associated ordinary topoi, for T € {an, nis, ét}. In particular, we have an equivalence of co-categories
Shvi (Bt/X"; A) ~ Shv{V (Et/X; A).

Proof. The second assertion follows from the first one using Lemma 2.1.4. To prove the first assertion,
we need to show that the unitid — e.e™ and counit e*e,, — id are equivalences on 7-sheaves of sets (i.e.,
on discrete T-sheaves). For x € |X|, we have a morphism of sites (Et/x, t) — (Et/X, 1), and we denote
by x* the associated inverse image functor. Then, the functors x*, for x € | X|, are jointly conservative on
7-sheaves of sets. The same discussion is equally valid for points of X’. Thus, we are left to show that
the natural transformations x* — x*e.e* and x"“e*e, — x’* are equivalences on T-sheaves of sets for all
x € |X| and x” € |X’|. Assuming that x is the image of x’, these natural transformations are equivalent
tox* — ey eix* and ejex X" — x™, where e, : x” — x is the obvious morphism. This follows from
Remark 2.7.3 and the fact that the morphism x” — X’ Xx x identifies x” with (X’ Xx X)eq. Thus, we are
reduced to prove the lemma for rigid points. Since x(x”) contains a dense purely inseparable extension
of k(x), the functor Et/x — Et/x’ is an equivalence of categories which respects the analytic, Nisnevich
and étale topologies. O

Remark 2.9.4. Lemma 2.9.3 admits a variant for universal homeomorphisms of schemes which is
well-known; see [SGAIV2, Exposé VIII, Théoreme 1.1].
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Corollary 2.9.5. Let e : S” — S be a universal homeomorphism of rigid analytic spaces. Then, for
7 € {nis, ét}, we have a co-Cartesian square in Pr"

RigSH'"" (5; A) —<— RigSH™ (5" A)

| |

RigSH™ Y (5;A) —— RigSH™ " (57 A).

Said differently, RigSHr(lf:f) (S;A) — RigSngﬂr’ A (S"; A) is a localisation functor with respect to the
image by e* of morphisms of the form COlim[n]eAM(eﬁ)(U.) — MCD(U_)) and their desuspensions
and negative Tate twists when applicable, with U, a T-hypercover in RigSm/S which we assume to be

truncated in the nonhypercomplete case.

Proof. Using Remark 2.1.17, one reduces easily to the effective case. From the construction, one sees
immediately that RigSHfl?;(S A — RigSHiﬁ’ (A)(S s A) is the localisation functor with respect to
morphisms of the form a,/F" — «,'G’, where:

o a : (RigSm/S’, 1) — (Et/B",, 1) is the premorphism of sites given by the obvious functor;

o ¥ — G’ is a morphism in Shvys (Et/B”,; A) inducing an equivalence in Shv(TA) (Et/B; A).

For example, 5" — G’ could be colim[,jep Anis(Uq) — Anis(U! ) with U; a7-hypercover in (Et/B%,, 1)
which is truncated in the nonhypercomplete case. The result follows now from the commutative square

Shvis (Et/B: A) —<— Shvyis (/B A)

* rE
anl Jan

Shvyis(RigSm/S; A) LA Shvyis (RigSm/S’; A)

and Lemma 2.9.3 which insures that the upper horizontal arrow is an equivalence of co-categories
respecting 7-local equivalences (in both the hypercomplete and nonhypercomplete cases). O

Theorem 2.9.6 (Semi-separatedness). Let T € {nis, ét}. Let e : X’ — X be a universal homeomorphism
of rigid analytic spaces. Assume that X has locally finite Krull dimension. Assume also that every prime
number is invertible in either Ox or my/A. Then the functor

¢* : RigSHY (X; A) — RigSH" (X'; A)

is an equivalence of co-categories.

Proof. By Corollary 2.9.5, we may assume that 7 is the Nisnevich topology. Since X and X'’ are locally
of finite Krull dimension, we are automatically working in the nonhypercomplete case by Proposition
2.4.19. We need to show that the unit id — e.e* and the counit e*e, — id are equivalences. By
Corollary 2.8.8, it is enough to show that the natural transformations x* — x*e,e* and x*e*e, — x*
are equivalences for all points x € |X|and x’ € |X’|. (Here we denote by x the morphism of rigid analytic
spaces x — X associated to the point x € |X| and similarly for x”.) Assuming that x is the image of x’,
these natural transformations are equivalent to x* — ey .e3x™ and efe, X — x™, where e, : x” — x
is the obvious morphism. This follows from Theorem 2.7.1 and the fact that the morphism x” — X’ Xx x
identifies x” with (X’ Xx x)req. Thus, we are reduced to prove the result for the morphism e, : x” — x
of rigid points. Moreover, we can write x’ ~ limg, x, With (x4). the cofiltered inverse system of rigid
analytic x-points such that x(x,) is a finite purely inseparable extension of x(x) contained in «(x’).
Using Theorem 2.8.15, we reduce to showing that e* is an equivalence for a morphism of rigid points
e : x’ — x such that x(x")/k(x) is a finite purely inseparable extension.
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Arguing as in [Ayol4a, Sous-lemme 1.4], we see that e*e, =~ id. Thus, we only need to check that
id — e.e” is an equivalence. Since e* and e, commute with colimits (by Proposition 2.4.22), it is enough
to show that id — e.e” is an equivalence when applied to a set of compact generators. Such a set is
given, up to desuspension and negative Tate twists, by objects of the form fyA with f : Spf (A)e - x,
where A a rig-smooth «*(x)-adic algebra. Set A’ = A ®+(x)k*(x’), and let e’ : Spf(A’)" — Spf(A)e
and f’ : Spf(A’)""® — x’ be the obvious morphisms. Using Propositions 2.2.1 and 2.2.12(2), we

1PN

have equivalences e.e”fy =~ e. fﬁ'e’* = fye.e”. Thus, to finish the proof, we only need to show that

A — ele”Ais an equivalence in RigSH, ;(Spf(A)"#; A). Recall that there is a morphism of Prl-valued
presheaves

An* : SHpis(—; A) — RigSH,;((-)*; A)

on Sch™/U, with U = Spec(A[n~']) where 7 € k*(x) a generator of an ideal of definition. Calling
e” : Spec(A’[n7']) — Spec(A[n~!]) the obvious morphism, we have, by Proposition 2.2.14, equiv-
alences An*e/e”* ~ e,e*An*. Thus, it is enough to show that A — e} e’”*A is an equivalence in
SH,;is(Spec(A[n~']); A). This follows from Theorem 2.9.7 below. O

Theorem 2.9.7. Let T € {nis, ét}. Let e : X’ — X be a universal homeomorphism of schemes. Assume
that every prime number is invertible in either Ox or mgA. Then the functor

e : SH(TA)(X;A) — SH.(,A) (X";N)

is an equivalence of co-categories.

Proof. Using the algebraic analogue of Corollary 2.9.5, we may assume that 7 is the Nisnevich topology
and we may work in the nonhypercomplete case. Then, the statement is [EK20, Theorem 2.1.1].
Alternatively, we may remark that the proof of [Ayol4a, Théoreme 3.9] can be extended easily to the
case of SHy;(—; A). We explain this below.

The problem is local on X, so we may assume that X is affine. By [Sta20, Lemma OEUJ], X’ is the
limit of a cofiltered inverse system of finitely presented X-schemes (X/,)q, with X/, — X universal
homeomorphisms. Using Proposition 2.5.11, we thus reduce to the case where e is assumed to be of
finite presentation. In this case, writing X as the limit of a cofiltered inverse system (X, ), consisting of
Z-schemes which are essentially of finite type, the scheme X" is the limit of (X; Xx, Xa)a<a, fora
finite universal homeomorphism X/, — Xg,. Using Proposition 2.5.11 again and base change for finite
morphisms, we reduce to the case where X is of finite type over Z. In conclusion, we may assume that
X has finite Krull dimension and that X’ — X is finite.

Arguing as in the beginning of the proof of Theorem 2.9.6 and using Remark 2.8.9 instead of
Corollary 2.8.8 and base change for finite morphisms instead of Theorem 2.7.1, we reduce to the case
where X is the spectrum of a field K and X’ the spectrum of a finite purely inseparable extension K'/K.
If K has characteristic zero, then K = K’ and there is nothing left to prove. So, we may assume that
K has positive characteristic p. We then write Spec(K) as the limit of a cofiltered inverse system of
finite type F),-schemes (X,)o and Spec(K’) as the limit of (X, XX Xao)a<a, for a finite universal
homeomorphism Xj, — Xq,. Thus, as before, we are finally reduced to treat the case where X and X’
are of finite type over F,. This case follows from [Ayol4a, Théoréme 1.2]. Indeed, the condition (SS,,)
of loc. cit. is satisfied for SHy;5(—; A) when p is invertible in mgA, as shown in [Ayol4a, Annexe C].
In fact, in loc. cit., this is stated explicitly in [Ayol4a, Théoreme C.1] for DAQt(—; A), but the proofs
apply also to SHy;s(—; A). Indeed, the main point is to show that elevation to the power p” on the
multiplicative group Gy, induces an autoequivalence of M(Gp,) in SH(F,; A); see [Ayol4a, Lemme
C.4]. This follows from the fact that elevation to the power m on Gy, induces the endomorphism of A(1)
given by multiplication by the element m, = 3.7 ((=1)=1yin Kg/lw (Fp); see [Morl2, Lemma 3.14].
That this element is invertible in the endomorphism ring of A(1) when m = p”" is proven in [EK20,
Lemma 2.2.8]. O
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Remark 2.9.8. In the statement of Theorem 2.9.6, we made the assumption that the rigid analytic
space X has locally finite Krull dimension, whereas the analogous assumption was not necessary for
Theorem 2.9.7. This is because we do not know if the analogue of [Sta20, Lemma OEUJ] holds for rigid
analytic spaces. This is indeed the only obstacle for removing the assumption on the Krull dimension
in Theorem 2.9.6. Said differently, semi-separatedness for rigid analytic motives holds for a universal
homeomorphism e : X’ — X when, locally on X, this morphism can be obtained as a weak limit of a
cofiltered inverse system of universal homeomorphisms (e, : X/, — Xo)a, Where the X,,’s have finite
Krull dimension.

Proposition 2.9.9 (Separatedness). Let f : Y — X be a morphism of rigid analytic spaces. Assume that

X is (A, ét)-admissible and that, for every point x € |X|, there is a point y € |Y| mapping to x and such
that k(y) contains a dense algebraic extension of x(x). Then the functor

/7 RigSH™ " (X; A) — RigSHS™"(v; A)
is conservative.

Proof. Using Corollary 2.8.8, we reduce to the case of rigid points. More precisely, we need to prove
that a morphism f : y — x of rigid points, with x(y) containing a dense algebraic extension of k(x),
induces a conservative functor

/% RigSHS " (x; A) — RigSH™" " (y; A).
To do so, we may obviously replace y by any rigid x-point y’ admitting an x-morphism y’ — y. Since
the completion of a separable closure of «(x) is algebraically closed, we may take for y” a rigid x-point x
as in Construction 1.4.27(2): k(X) is the completion of a separable closure k(x) of x(x) and «* (X) is the
completion of a valuation ring k* (x) C k(x) extending «* (x). In this case, we have X ~ lim,, x,, where

(xa)q is the inverse system of rigid x-points such that x(x, ) is a finite subextension of x(x)/«(x). By
Theorem 2.8.6, we have an equivalence:

RigSH™" " (—; A)r = RigSHS™"\(T; A),

where the left-hand side is the stalk of RigSHéfﬁ)’ "(=; A) at the point X of the site (Et/x, ét). Since this
point is conservative, we deduce from Lemma 2.8.5(2) that the functor

RigSH'*™" " (x; A) — RigSH ™" (7; A)

is conservative, as needed. |

Corollary 2.9.10. Let X be a (A, ét)-admissible rigid analytic space, and let f : Y — X be a locally of
finite type surjective morphism. Then the functor

£*: RigSHS™ " (X; A) — RigSHS™ " (v; A)

is conservative.

Proof. For every point x € |X|, we may find a point y € |Y| mapping to x and such that «(y)/k(x) is
a finite extension. (This follows from [FK 18, Chapter II, Proposition 8.2.6] by a standard argument.)
Thus, the result is a particular case of Proposition 2.9.9. O

https://doi.org/10.1017/fms.2022.55 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.55

72 Joseph Ayoub et al.

Corollary 2.9.11. Let e : X" — X be a universal homeomorphism of rigid analytic spaces, and assume
that X is (A, ét)-admissible. Then, the functor

e* : RigSH"™ " (X; A) — RigSH™ " (X7; A)
is an equivalence of co-categories.

Proof. The morphism (X" )req — (X’ Xx X' )req is a closed immersion and a universal homeomorphism,
hence it is an isomorphism. Arguing as in [Ayol4a, Sous-lemme 1.4], we deduce that e*e.. ~ id. Since
e* is conservative by Proposition 2.9.9, the result follows. O

Remark 2.9.12. Of course, the T-stable case of Corollary 2.9.11 is already covered by Theorem 2.9.6
under weaker assumptions. The content of this corollary is that semi-separatedness holds also for
effective étale motives. It is worth noting that the algebraic analogue of this result is unknown.

Remark 2.9.13. Corollary 2.9.11 can be used to improve on the main result of [Vez17]. Indeed, given
a rigid variety B over a non-Archimedean field K, Corollary 2.9.11 implies that RigDAZ?’ (A (B;Q)

is equivalent to the co-category RigDA;i;b(é:)(BPerf; Q) introduced in [Vez17, Definition 3.5]. Thus,
assuming that B is normal, [Vez17, Theorem 4.1] can be stated more naturally as an equivalence of

oco-categories
RigDAS™ Y (B; Q) = RigDMS™ W (B; Q).

In fact, this equivalence can be obtained more directly by arguing as in the proof of loc. cit., without

mentioning the co-category RigDA;i;b(éAt) (B, Q). We leave the details to the interested reader.

2.10. Rigidity

Here we discuss the rigidity property for rigid analytic motives. Rigidity is the property that the co-
category of torsion étale motives over a base is equivalent to the co-category of torsion étale sheaves on
the small étale site of the same base. Rigidity for rigid analytic motives was obtained in [BV 19, Theorem
2.1] for RigDA/ (S; A), with S of finite type over a non-Archimedean field and A an ordinary torsion
ring. Rigidity in the algebraic setting was obtained in [Ayol4a, Théoréme 4.1] for DAZ (—; A), with A
an ordinary torsion ring, and in [Bac21a, Theorem 6.6] for SHQt —; ), with A the sphere spectrum. In
the recent preprint [Bac21b], Bachmann proved rigidity for effective motives and removed all finiteness
assumptions on the base scheme. We shall revisit these results in this subsection, mainly following
[Bac21a, Bac21b].

Notation 2.10.1. Let C be a stable presentable co-category and ¢ a prime number. An object A of C is
said to be {-nilpotent if the zero object of C is a colimit of the N-diagram

€-id £-id £-id
ASS ASS A S

An object A of C is said to be £-complete if the zero object of € is a limit of the N°P-diagram

£-id £-id £-id
— A— A— A

We denote by Cpni C € and Cp.epy C € the sub-co-categories spanned by £-nilpotent and £-complete
objects, respectively. Given an object A of C, we denote by A/¢" the cofiber of the map

"-id: A — A
Since multiplication by £" is zero on A/{", it is both £-nilpotent and £-complete.
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We gather a few facts concerning the notions of £-nilpotent and £-complete objects in the following
remark. We refer the reader to [Lurl8, Part I, Chapter 7] where these notions are developed in greater
generality. See also [Bac21a, §2.1].

Remark 2.10.2. Let C be a stable presentable co-category and £ a prime number. We denote by C[£7!]
the full sub-co-category of € spanned by those objects for which multiplication by ¢ is an equivalence.

(1) The co-category Cy.yj is stable, presentable and generated under colimits by the objects of the form
A/€", for A € C. The inclusion functor C¢_pj; — € commutes with colimits and finite limits. If C is
compactly generated, then so it is Cypj-

(2) The co-category Ce.cpi is the localisation of € with respect to the maps 0 — A for A € C[¢71]. We
denote by (=), : € — Cy.cpl the left adjoint to the inclusion functor. This is called the £-completion
functor.

(3) The ¢-completion functor induces an equivalence of co-categories

(_)[/)\ : ef-m’l ;) e[-cpl.

In particular, we see that C.cp is stable, presentable and generated under colimits by the objects of
the form A /", for A € C. If € is compactly generated, then so is Cy.cpl.

(4) If @ underlies a presentable symmetric monoidal co-category C®, then there is an essentially unique

morphism €® — Gf?icpl in CAlg(Pr") whose underlying functor is (=)} €= Crepl-

(5) Suppose that C is given as a colimit in Pr" of an inductive system (C,), of stable presentable
co-categories. Then C[£~!] is also the colimit of the inductive system (C,[£7']), in Pr’. (This
uses the fact that a colimit in Pr“ can be computed as a limit in PrR.) In particular, C[£7!] is
generated under colimits by the images of the functors C, [£~!] — C[£7!]. It follows from (2) and
the universal property of localisations (see [Lur(09, Proposition 5.5.4.20]) that C_¢ is the colimit
in Pr" of the inductive system (C a, t-cpl)a- Using (3), we deduce that Cy.yj is also the colimit in Pr-
of the inductive system (Cq, ¢-nil)a-

Theorem 2.10.3 (Rigidity). Let S be a rigid analytic space and € a prime number which is invertible in
K(s) for every s € |S|. Assume one of the following two alternatives.

(1) We work in the nonhypercomplete case, and A is eventually coconnective.
(2) We work in the hypercomplete case.

Then the obvious functor
Shvi! (Et/S; A)r-cpr — RigSHE™ ™ (8 A)r-opt (52)

is an equivalence of co-categories. (The same is true with ‘C-nil’ instead of ‘€-cpl’.)
We also have the algebraic analogue of Theorem 2.10.3 which can be stated as follows.

Theorem 2.10.4. Let S be a scheme and € a prime number which is invertible on S. Assume one of the
following two alternatives.

(1) We work in the nonhypercomplete case, and A is eventually coconnective.
(2) We work in the hypercomplete case.

Then the obvious functor

Shv i (/S A)r-cpr = SHE™ ™ (83 Ay (53)

t
is an equivalence of co-categories. (The same is true with ‘€-nil’ instead of “€-cpl’.)

Proof. We first consider the alternative (1). We may assume that S is affine and given as the limit of
a cofiltered inverse system (S,), of affine schemes of finite type over Z. By the algebraic analogue
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of Lemma 2.4.21 and Proposition 2.5.11, it is enough to prove the conclusion for the S, ’s. Thus, me
may assume that S is of finite type over Z and hence (A, ét)-admissible. By the algebraic analogue of
Lemma 2.4.18(2) and Proposition 3.2.2 below, we are then automatically working in the hypercomplete
case. This means that we only need to consider the alternative (2). In that case, the result is essentially
[Bac21a, Theorem 6.6] improved in [Bac21b, Theorem 3.1]. m]

Remark 2.10.5. Arguing as above, we only need to prove Theorem 2.10.3 under the second alternative.
Indeed, by Lemma 2.4.21 and Theorem 2.5.1, we may assume that S is (A, ét)-admissible. In this case,
there is no distinction between the hypercomplete and the nonhypercomplete cases by Lemma 2.4.18(2)
and Proposition 2.4.19.

Our proof of Theorem 2.10.3 follows the arguments in [Bac21a, Bac21b] and relies on some of the
key steps in loc. cit. We start with a reduction to the (A, ét)-admissible case.

Lemma 2.10.6. 7o prove Theorem 2.10.3, we may work in the hypercomplete case and assume that S is
(A, ét)-admissible.

Proof. We said already that it is enough to work under the second alternative. Assume that Theorem
2.10.3 is known in the hypercomplete case when the base is (A, ét)-admissible. To prove the theorem in
general, we argue as in the proof of [Bac21b, Theorem 3.1]. We may assume that S = 8¢, where § is
an affine formal scheme given as the limit of an affine formal pro-scheme (8, ), such that the 8,’s are
of finite type over Z[£~'][[x]]. We set S, = 84,%; these are (A, ét)-admissible rigid analytic spaces. By
Lemma 2.4.21, Theorem 2.5.1 and Remark 2.10.2(5), we have a commutative square

colim o Shvyis (Sq; A)(,’—cpl ———— Shvys (S5 A)é’—cpl

| |

colim, RigSH'™ (8 4; A)p-cp —— RigSH™ (8; A)y-cpt,

nis nis

where the horizontal arrows are equivalences of co-categories. It follows that in the analogous commu-
tative square

colimq Shvy, (S a3 A)pcp ———— Shv(S; A)r-cpl
colim, RigSHL™" " (S 05 A)g-cp —— RigSHL™ " (83 A)-cpis

the horizontal arrows are localisation functors, whereas, by assumption, the left vertical arrow is an
equivalence. This shows that

Shv, (S5 A)ecpt — RigSHE™ " (81 A)-cpi (54)

is a localisation functor. To finish the proof, it remains to see that the functor (54) is conservative. Given
a geometric rigid point 5 — S, we have a commutative square

Shv\ (3 A)e-cpr — RigSH™ " (83 A)r-cpy

| |

Shv\ (55 Ag-cpl —— RigSHE™ " (55 A) r-epl,
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and the bottom arrow is an equivalence, again by assumption, since 5 is (A, ét)-admissible. This proves
that the functor (—); : ShvéAt(S i N)ecpt — (Mody )e-cpl factors through the functor (54). We conclude
using Propositions 1.4.29 and 2.8.1. O

‘We now introduce some notations.

Notation 2.10.7. Let S be a rigid analytic space. The {-completion of the constant étale sheaf A €
Shvét/\ ) (Et/S; A) will be denoted simply by A,. This is the unit object of Shvét/\ ) (Et/S; A)¢_cpl endowed
with its natural monoidal structure. We denote by

Ly : Shvét/\) (Et/S; A) — RigSH‘fﬁ’ (A)(S; A)

et

the obvious functor, and by tg_. its right adjoint. Similarly, we denote by
iy, ¢+ ShV'Y (Bt/S: A)ropt — RigSHS™ Y (S: A)repl

the functor induced by ¢ on £-completed objects, and by ¢s. ¢, - its right adjoint. We denote by
Y ¢ RigSHE™ ™ (8 A)r-epr — RigSHY (83 A)p-epl

the functor induced by £ on {-completed objects, and by QF , its right adjoint. (See Definition 2.1.15.)
The functor (52) is given by ¢ , in the effective case and by X7’ , o ¢ , in the T-stable case. These
notations apply also when S is a scheme.

Recall that Ug is the relative unit sphere over the rigid analytic space S. (See Notation 2.1.10(3).)

Lemma 2.10.8. Let S be a rigid analytic space and € a prime number which is invertible in k(s) for
every s € |S|. There is a ®-invertible object A¢(1) in Shvy,(S; A)p.cpi together with a morphism

(TZAg —)A{(l)[l] (55)

in Shvg(Et/Ug; N)e-cpl endowed with a trivialisation (i.e., a homotopy to the null morphism) over the
unit section lsg C Uls. Moreover, the induced morphism o : T} — 5 o (Ae(1)[1]) is an equivalence in

RigSH™ " (83 A)-cpi.

Proof. We may construct Ag(1) and o : Ay — Ag(1)[1] locally on S provided that the construction is
compatible with base change. Assume that S = Spf(A)"¢ with A an adic ring. Let I C A be an ideal
of definition, and set U = Spec(A) . Spec(A/I). We denote by Ay(1) € Shvé\t(Et/U; A)¢cpl the ®-
invertible object obtained from the one introduced in [Bac21a, Definition 3.9] by extension of scalars
to A. Also, let o : Ay — A/(1)[1] be the morphism in Shvgt(Et/Ab N Oy; A)r-cpl obtained from the
one introduced in [Bac21a, Definition 3.13] by extension of scalars to A. As explained in the beginning
of [Bac2la, §6], a trivialisation of ¢ above 1g gives rise to a morphism TQ - L*U’[Ag(l)[l] in

SHE?’ U, A)¢-cpl- As explained in the beginning of the proof of [Bac21b, Theorem 3.1], this morphism
is an equivalence (see also [Bac21a, Theorem 6.5] in the T-stable case). The lemma follows now from
the existence of a commutative square of stable presentable co-categories

Shvi (Bt/U; A) —2— SHE (U A)

€t

| |

Shv’ (t/S; A) —>— RigSHE™ " (53 A).

€t

where the vertical arrows are induced by the analytification functor. m}
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Corollary 2.10.9. Let S be a rigid analytic space and € a prime number which is invertible in k(s) for
every s € |S|. Then the obvious functor

2%, - RigSHE™ " (85 A)r-cpt — RigSHS™ " (83 A)-cpi

is an equivalence of co-categories. (The same is true with ‘C-nil’ instead of “€-cpl’.)

Proof. Indeed, by Remarks 2.1.17 and 2.10.2(5), ngSH (85 A)p-cpr is the colimit in Pr" of the N-

diagram whose transition maps are given by tensoring with T? in ngSHzff S s N)e-cpl- The result
follows since T} is ®-invertible by Lemma 2.10.8. O

Lemma 2.10.10. Let S be a (A, ét)-admissible rigid analytic space and € a prime number which is
invertible in K(s) for every s € |S|. Then the obvious functor

Shv (Bt/S; A)g-cpr — RigSHE™ " (85 A)g-cpt (56)

is fully faithful. (The same is true with ‘C-nil’ instead of “C-cpl’.)

Proof. By Corollary 2.10.9, we only need to treat the effective case. The functor
U5 : PSh(Et/S; A) — PSh(RigSm/S; A)

is fully faithful and its right adjoint commutes with étale hypersheafification. It follows that the induced
functor on étale hypersheaves

U5 : Shv} (Et/S; A) — Shv} (RigSm/S; A)
is also fully faithful, and the same is true for the induced functor on {-complete objects

LS ;- Shvj, (Et/S A)¢-ept — Shvj (RigSm/S; A)z-cpl.

We claim that the functor LS ¢ takes values in the sub-co-category ngSHeﬁ (S5 Ay -cpl Spanned by B'-
local objects; this would finish the proof. Indeed, let I be an {-complete etale hypersheaf of A-modules
on Et/S. Saying that i T is B'-local is equivalent to saying that for every X € RigSm/S, the map

I'x;Fx) — F(B;(; 5"|B;() is an equivalence. (Here we denote by F|x the £-complete inverse image of
F along the morphism X — S and similarly for S"IB;(.) Since X is (A, ét)-admissible, the claim follows
from Lemma 2.10.11(1) below (see also [Hub96, Example 0.1.1(2)]). m]

Lemma 2.10.11. Let X be a (A, ét)-admissible rigid analytic space and € a prime number which is
invertible in x(x) for every x € |X|. Let p : B§( — X be the obvious projection, and let F be an

£-complete étale hypersheaf on Bt/ X. Then the map F — p.p*TF is an equivalence.

Proof. Itis enough to prove the results on the stalks for all geometric algebraic rigid pointsx — X. Using
Remark 2.7.3, we reduce to showing the following. Given a geometric rigid point s = Spf(V)"¢ and an
¢-complete étale hypersheaf of A-modules F on Et/s, the map F(s) — I'(B LT s1) is an equivalence.
Using Lemmas 2.4.5 and 2.4.11, we reduce to the case where F is bounded. By an easy induction, we
reduce to the case where J is discrete, and we may then assume that J is an ordinary étale sheaf of
Z/"-modules. The site (Et/s, ét) is equivalent to (FRigEt/Spf(V), rigét) and, since s is geometric, it
is also equivalent to (Et/Spec(V’), ét), where V' = V/ \/(7) with 7 a generator of an ideal of definition
of V. Thus, we may consider F as an ordinary étale sheaf on FRigEt/Spf(V) and on Et/Spec(V’). We
then have equivalences:

RFe(By: Flat) = Rlviger(Ay: Flat ) = RTa(Ayiij(Z/") @zen Flyy ). (57)
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Here i denotes the closed immersion Spec(V’) — Spec(V) and its base changes, and j denotes the
open complement of i and its base changes. The second equivalence in equation (57) follows from
[Hub96, Corollary 3.5.16]. (More precisely, we reduce to the case where F is of the form i,Z/¢" with
i’ . Spec(V"") — Spec(V’) a closed immersion, and we remark that [Hub96, Corollary 3.5.16] is still
valid if we replace the closed point of Spec(V) by a closed subscheme contained in Spec(V”).) Using
the smooth base change theorem in étale cohomology [SGAIV3, Exposé XVI, Théoréme 1.1] and the
fact that the fraction field of V is algebraically closed, we deduce that i*j,Z/¢" ~ Z/€" on A{,,. Thus,
the last term in equation (57) is equivalent to RI& et(AV, 3 F Al ,) which, by homotopy invariance of étale
cohomology [SGAIV3, Exposé XV, Corollaire 2.2], is equivalent to F(V’) ~ F(s). This proves that
F(s) is indeed equivalent to R['(Bl; F |Bl- ) as needed. O

Proof of Theorem 2.10.3. Using Lemmas 2.10.6 and 2.10.10, it remains to see that the functor (56) is
essentially surjective (still under the assumption that S is (A, ét)-admissible). Moreover, it is enough to
do so in the T-stable case by Corollary 2.10.9. We follow the argument used in the proof of [BV19,
Theorem 2.1].

The question being local on S, we may assume that S = Spf(A)"¢ with A an adic ring of principal
ideal type. Let 7 € A be a generator of an ideal of definition and set U = Spec(A[x~']). It is
enough to show that the image of the functor (56), in the T-stable case, contains a set of generators of
RigSHQt S5 A)ecpl- Such a set of generators is given, up to shift and Tate twists, by M(V)/{", where
n € N and V = Spf(B)"® with B a rig-étale adic A-algebra satisfying the conclusion of Proposition
1.3.15. Thus, there exists a smooth affine U-scheme X and an open immersion v : V — X*". Since we
are allowed to replace V by the components of an analytic hypercover, we may assume that Qy  is
free. Fix a projective compactification j : X — P over U, and denote by f : X - Uandp : P - U
the structural morphisms. Thus, we have a commutative diagram

/\

V Xan s Pal’l

x Jf "

S.

The motive M(V) is equivalent to gyA =~ f, anvﬁA. Using Corollary 2.2.9, we see that M (V) is equivalent,
up to shift and Tate twist, to f"vyA = p?“];“\/ﬁA = pavgA.

Using Lemmas 2.10.8 and 2.10.10, the image of the functor (56), in the T-stable case, is closed under
shift and Tate twists. Therefore, it remains to see that the latter image contains pi"vyA/{". Clearly,
vyA/€" belongs to the image of

ZT ¢ © LP‘In ¢ ShV (Et/Pan N)g. -cpl — ngSH (P™; A)g. —cpl-

Thus, it is enough to show that the natural transformation X7, o LS gopt o piloXEy o ijn ¢, isan
equivalence. (The first pi" is the direct image functor on étale hypersheaves and the second p"“1 is the
direct image functor on rigid analyt1c motives.) Using Corollary 2.10.9, it is enough to show that the
natural transformation ¢ , o pi* — pitou] pan_¢ 1S a0 equivalence. Given an £-complete étale hypersheaf

an  *x

F on Et/P™ the evaluation of LS PEF — pipnd on a smooth rigid analytic S-space Y is given by
L(Y:g"pl"F) - LY x5 P, g"F) =T(Y; pig"F),
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where p’ and g’ are as in the Cartesian square

’

Y xs P 5 pan

F T

y —5 .

The result follows now from the quasi-compact base change theorem, see Remark 2.7.3. O

3. Rigid analytic motives as modules in formal motives

This section contains one of the key results of the paper which, roughly speaking, gives a description
of the functor RigSH(TA) (=;A) in terms of the functor SH(TA) (=;A). This can be considered as a vast
generalisation of [Ayol5, Scholie 1.3.26]. In fact, we prefer to work with the functor FSH(TA) (= A),
sending a formal scheme to the co-category of formal motives, instead of the functor SH(TA) (=;A), but
this is a merely aesthetic difference by Theorem 3.1.10. For a precise form of the description alluded to,
we refer the reader to Theorems 3.3.3 and 3.8.1.

We start by recalling the definition and the basic properties of the co-category FSH(Teff’ ~ (8;A) of
formal motives over a formal scheme 8.

3.1. Formal and algebraic motives

Recall that we denote by FSch the category of formal schemes and that, given a formal scheme §, we
denote by FSm/8 the category of smooth formal 8-schemes. (Notations 1.1.5 and 1.4.9.) The co-category
of formal motives over a formal scheme is constructed as in Definitions 2.1.11 and 2.1.15.

We fix a formal scheme S and 7 € {nis, ét}.

Definition 3.1.1. Let FSHeTﬁ’ (A)(S;A) be the full sub-co-category of Shv(TA) (FSm/S8; A) spanned by
those objects which are local with respect to the collection of maps of the form A, (A;C) — A+ (X), for
X € FSm/S8 and their desuspensions. Let

L, : ShviV (FSm/8; A) — FSH™ (Y (8; A) (58)

be the left adjoint to the obvious inclusion. This is called the A'-localisation functor. Given a smooth
formal 8-scheme X, we set M (X) = L1 (A, (X)). This is the effective motive of X.

Remark 3.1.2. By [Lurl7, Proposition 2.2.1.9], FSHiﬁ’ (A (8; A) underlies a unique monoidal oco-
category FSHeTff’ (A)(S;A)@’ such that L, lifts to a monoidal functor. Moreover, this monoidal co-
category is presentable, i.e., belongs to CAlg(Pr").

Definition 3.1.3. Let Tg (or simply T if § is clear from the context) be the image by L1 of the cofiber
of the split inclusion A+ (8) — A, (A}S \ 0g) induced by the unit section. With the notation of [Rob15,
Definition 2.6], we set

FSHV (8; A)® = FSH™ V) (8; A)®[Tg]. (59)

More precisely, there is a morphism X : FSHiﬁ’(A) (8;N)® — FSH(TA) (8;A)® in CAlg(Prl),
sending Ts to a ®-invertible object, and which is initial for this property. We denote by QF :
FSH(TA) (8;A) — FSHeTﬁ’ » (8; A) the right adjoint to 7. Given a smooth formal $-scheme X, we set
M(X) = ZMeT(X). This is the motive of X.
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Definition 3.1.4. Objects of FSH(TA) (8; A) are called formal motives over S. We will denote by A (or
Ag if we need to be more precise) the monoidal unit of FSH(TA) (8; A). For any n € N, we denote by
A(n) the image of Tg”[—n] by £%, and by A(—n) the ®-inverse of A(n). For n € Z, we denote by
M +— M(n) the Tate twist given by tensoring with A(n).

Remark 3.1.5.

(1) Remark 2.1.17 applies also in the case of formal motives: The co-category FSH.(,A) (8; A) underlying
the symmetric monoidal co-category (59) is equivalent to the colimit in Pr' of the N-diagram whose
transition maps are given by tensoring with Tg in FSHiﬁ’ ) (8;A).

(2) When A is the Eilenberg—Mac Lane spectrum associated to an ordinary ring, also denoted by A,
the category FSH(Teﬂ" ~ (8; A) is more commonly denoted by FDA(Teﬂ" n (8;A). Also, when 7 is the
Nisnevich topology, we sometimes drop the subscript ‘nis’.

(3) Justasin Remark 2.1.19, there is a more traditional description of the co-category FSH(Teﬂ" ~ (8;A)
using the language of model categories. This is the approach taken in [Ayol5, §1.4.2].

(4) If § is an ordinary scheme considered as a formal scheme in the obvious way, i.e., such that

the zero ideal is an ideal of definition, then the oco-category FSH(Teﬁ’ A (S; A) is the usual oco-

category SH(Teﬁ’ M (S; A) of algebraic motives over S. More generally, by Theorem 3.1.10 below,
the co-categories introduced in Definitions 3.1.1 and 3.1.3 are always equivalent to co-categories of
algebraic motives.

Lemma 3.1.6. The monoidal co-category FSH(TCH’ ~ (8; A)® is presentable, and its underlying oo-
category is generated under colimits, and up to desuspension and negative Tate twists when applicable,
by the motives M%) () with X € FSm/$ quasi-compact and quasi-separated.

Proof. See the proof of Lemma 2.1.20. O

Proposition 3.1.7. The assignment 8 +— FSH(Teﬁ’ N (8; A)® extends naturally into a functor
FSH ™" (= A)® : FSch® — CAlg(Pr"). (60)

Proof. Wereferto [Robl14, §9.1] for the construction of an analogous functor in the algebraic setting. O

Notation 3.1.8. Let f : Y — X be a morphism of formal schemes. The image of f by the functor (60)
is the inverse image functor

£ FSHE™ M (00 A) — FSHE™ M (y; A)

which has the structure of a monoidal functor. Its right adjoint f. is the direct image functor. It has the
structure of a right-lax monoidal functor. (See Lemma 3.4.1 below.)

Notation 3.1.9. Recall that we denote by X the special fiber of a formal scheme X. (See Notation
1.1.6.) The functor X + X induces a functor (=), : FSm/S — Sm/S, which is continuous for the
topology 7. By the functoriality of the construction of co-categories of motives, we deduce an adjunction

o*  FSHET Y (8: A) 2 SHET V(8,5 A) : 0. 1)

In fact, modulo the identification of Remark 3.1.5(4), o™ is simply the inverse image functor associated
to the morphism of formal schemes X, — X.

Theorem 3.1.10. The functors o* and o in equation (61) are equivalences of co-categories.

Proof. This is [Ayol5, Corollaires 1.4.24 & 1.4.29] under the assumption that § is of finite type over
Spf(k°), with k° a complete valuation ring of height < 1. However, this assumption is not used in the
proofs of these results. m}
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Remark 3.1.11. Let f : Y — X be a morphism of formal schemes. Modulo the equivalences of
Theorem 3.1.10, the operations f* and f. coincide with the operations f;; and f, . associated to the
morphism of schemes f, : Y, — X. When f,, is locally of finite type, we denote by f; and f' the
operations on formal motives corresponding to the operations f,- ; and f; on algebraic motives modulo
the equivalences of Theorem 3.1.10 (in the T-stable case). Similarly, if f, is smooth, we denote by fy
the operation corresponding to fo, 4.

Notation 3.1.12. Recall that we denote by X" the generic fiber of a formal scheme X. (See Notation
1.1.8.) The functor X — X" induces a functor (=)"¢ : FSm/8 — RigSm/8"¢ which is continuous
for the topology 7. By the functoriality of the construction of co-categories of motives, we deduce an
adjunction

& FSHE™ M (8; A) 2 RigSHE™ V(812 A) : ys. (62)
Composing with the equivalences of Theorem 3.1.10, we get also an equivalent adjunction

gs : SH V(855 A) 2 RigSHI™ "V (8™ A) : xs. (63)
These adjunctions will play an important role in this section.

Proposition 3.1.13. The functors és, for 8 € FSch, are part of a morphism of CAlg(Pr")-valued
presheaves

¢ :FSH Y (=1 0)° — RigSH Y ((-)™%: 4)° (64)

on FSch. In particular, the functors £s are monoidal and commute with the inverse image functors.
Moreover, if f : T — 8 is a smooth morphism in FSch, the natural transformation

fyfoér > s o fy
is an equivalence.

Proof. One argues as in [Rob14, §9.1] for the first assertion. The second assertion is clear. ]

In the rest of this subsection, we use the above constructions to produce a convenient conservative
family of functors for the co-category RigSH(Teﬁ’ ~ (S;A) for S a rigid analytic space. This family is
rather big: It is indexed by formal models of smooth rigid analytic S-spaces. For a better result, we refer
the reader to Corollary 3.7.20 below. We start by recording the following general fact.

Proposition 3.1.14. Let (F; : C; — D); be a small family of functors in Pr™ having the same target D.
Let G; be the right adjoint of F;. Then the following conditions are equivalent:

(1) the family (G; : D — ©});¢s is conservative;
(2) D is generated under colimits by objects of the form F;(A), with A € C;.

Proof. Assume first that (2) is satisfied. Let f : X — Y be a map in D such that G;(f) is an equivalence
for every i. We want to show that f is an equivalence. To do so, consider the full sub-co-category Dy c D
spanned by objects E such that Map, (E, X) — Mapy (E,Y) is an equivalence. Clearly, Dy is stable
under arbitrary colimits and contains the images of the F;’s. By (2), it follows that Dy = D, and thus f
is an equivalence by the Yoneda lemma.

We now assume that (1) is satisfied. Denote by D’ ¢ D the smallest full sub-co-category containing
the images of the F;’s and stable under arbitrary colimits. We need to show that D’ = D. We claim that
the oco-category D’ is presentable. Indeed, as the F;’s are colimit-preserving and the C;’s are presentable,
D’ is the smallest sub-co-category of D stable under colimits and containing a certain small set of objects
(namely the union of images of sets of generators for the C;’s). These objects are k-compact for « large
enough. Thus, our claim follows from Lemma 2.8.2. Using [Lur(9, Corollary 5.5.2.9], we may thus

https://doi.org/10.1017/fms.2022.55 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.55

Forum of Mathematics, Sigma 81

consider the right adjoint p to the inclusion functor D’ — D. Fix an object X € D. We will show that
p(X) — X is an equivalence, which will finish the proof. Since the G;’s form a conservative family,
it is enough to show that the maps G;(p(X)) — G;(X) are equivalences. By the Yoneda lemma, it is
enough to show that the maps

Mape, (A, Gi(p(X))) — Mapg, (A, Gi(X))
are equivalences for all A € C;. By adjunction, these maps are equivalent to
Mapy, (Fi(A), p(X)) — Mapy, (Fi(A), X),

which are equivalences since the F;(A)’s belong to D’. O

Proposition 3.1.15. Let S be a rigid analytic space. For every U € RigSmY% /S, denote by fy : U — S
the structural morphism and choose a formal model U of U. Then, the functors

xu o f; : RigSHE™ Y (8:A) — FSHE™ Y (1 A),

Jor U € RigSm¥®/S, form a conservative family. In fact, the same is true if we restrict to those U’s
admitting affine formal models of principal ideal type.

Proof. The functor yy o f; has aleft adjoint fi; 4 o &y sending the monoidal unit of FSH(Teﬂ’ ~ (U; A)
to M) (/). We conclude by Lemma 2.1.20 and Proposition 3.1.14. O

3.2. Descent, continuity and stalks, 1. The case of formal motives

In this subsection, we gather a few basic properties of the functor § FSH(Teﬁ’ ~ (8;A), f > f* from
Proposition 3.1.7. We fix a topology 7 € {nis, ét}.

Proposition 3.2.1. The contravariant functor
§ = FSHITY(8;4), [ f*

defines a t-(hyper)sheaf on FSch with values in Pr".

Proof. The proof is similar to that of Theorem 2.3.4. It suffices to prove that, for every formal scheme
8, the functor

FSH™ Y (< A) : (Et/8)® — Prt,
is a 7-(hyper)sheaf. One reduces, by an essentially formal argument, to showing that the functor
Shvi" (FSm/—; A) : (Et/8)°P — Pr-

is a 7-(hyper)sheaf, and this follows from Corollary 2.3.8. The formal argument alluded to can be found
in the proof of Theorem 2.3.4, and we will not repeat it here. O

A formal scheme § is said to be (A, 7)-admissible (resp., (A, 7)-good) if the scheme S, is (A, 7)-
admissible (resp., (A, 7)-good) in the sense of Definition 2.4.14.

Proposition 3.2.2. Let 7 € {nis, ét} and let 8 be a (A, T)-admissible formal scheme. When T is the étale
topology, assume that A is eventually coconnective. Then, we have

FSHD-"(8; A) = FSHP (8; A).

Proof. This is proven in the same way as Proposition 2.4.19. o
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Proposition 3.2.3. Let § be a formal scheme.

(1) The oo-category FSH(TEE) (8; A) is compactly generated if T is the Nisnevich topology or if A\ is
eventually coconnective. A set of compact generators is given, up to desuspension and negative
Tate twists when applicable, by the M) (X) for X € FSm/8 quasi-compact, quasi-separated and
(A, 1)-good.

(2) The co-category FSH(TCE)’ N(8: A) is compactly generated if S is (A, T)-admissible. A set of compact
generators is given, up to desuspension and negative Tate twists when applicable, by the M ()
Jor X € FSm/8 quasi-compact, quasi-separated and (A, 7)-good.

Moreover, under the stated assumptions, the monoidal co-category FSH(TCE’ A (8; A\)® belongs to
CAlg(Pr%,), and if f : T — 8 is a quasi-compact and quasi-separated morphism of formal schemes
with T assumed (A, T)-admissible in the hypercomplete case, the functor f* : FSH(Teﬁ’ ~ (8;A) —
FSH(Teﬁ’ n (T A) is compact-preserving, i.e., belongs to P,

Proof. This is proven in the same way as Proposition 2.4.22. O

Given a formal scheme 8, we write ‘pved, (8)” instead of ‘pved, (84-)’; see Definition 2.4.10. Our
next statement is an analogue of Theorem 2.5.1 for formal motives.

Proposition 3.2.4. Let (S,)o be a cofiltered inverse system of quasi-compact and quasi-separated
Jformal schemes with affine transition maps, and let § = lim, 8 be the limit of this system. We assume
one of the following two alternatives.

(1) We work in the nonhypercomplete case.

(2) We work in the hypercomplete case, and 8 and the 8 ,’s are (A, T)-admissible. When 7 is the étale
topology, we assume furthermore that A is eventually coconnective or that the numbers pved, (84)
are bounded independently of a.

Then the obvious functor

colim FSH™ ™ (8,; A) — FSHET M (8; A),
a

where the colimit is taken in P, is an equivalence.

Proof. This follows immediately from Proposition 2.5.11 and Theorem 3.1.10. O

We will use Proposition 3.2.4 to compute the stalks of FSH(Teff’ M (—; A) for the topology rig-7 on
FSch. (See Corollary 1.4.13). We first describe a conservative family of points for this topology.

Remark 3.2.5. Let 8 be a formal scheme. A rigid point of § is a morphism s : Spf(V) — 8, where
V is an adic valuation ring of principal ideal type. We sometimes also denote by s the formal scheme
Spf(V). The assignment (Spf(V) — 8) + (Spf(V)"& — 8'2) is an equivalence of groupoids between
rigid points of 8 and those of 82. (See Remark 1.4.25.) We will say that a rigid point s : Spf(V) — 8 is
algebraic (resp., 7-geometric) if the associated rigid point of 8" is algebraic (resp., T-geometric). See
Remarks 1.4.23 and 1.4.25 and Definition 1.4.24.

Proposition 3.2.6. Let 8 be a formal scheme. We denote by FRigEt/8 the category of rig-étale formal S-
schemes. Then, the site (FRigEt/8, rig-t) admits a conservative family of points indexed by T-geometric
algebraic rigid points s = Spf(V) — 8. To such a rigid point s, the associated topos-theoretic point is
given by

F—>TFs= colim F(U),
Spf(V)->U—-8

where the colimit is over rig-étale neighbourhoods U of s. Moreover, one may restrict to those rigid
points of 8" as in Construction 1.4.27.
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Proof. This follows from Corollary 1.4.13 and Proposition 1.4.29. m}

Proposition 3.2.7. Let S be a formal scheme, and let s — 8 be an algebraic rigid point of 8. Assume
one of the following two alternatives.

(1) We work in the nonhypercomplete case.

(2) We work in the hypercomplete case, and 8§ and S"2 are (A, T)-admissible. When T is the étale
topology, we assume furthermore that A is eventually coconnective or that the numbers pved, (87),
for admissible blowups 8’ — 8, are bounded independently of 8.

Then there is an equivalence of co-categories

FSH™ M (= A), = FSHET " (5; ),
where the left-hand side is the stalk of FSH(TCH’ A (—;A) ats, i.e., the colimit, taken in P, of the diagram
(s > U — 8) > FSH™ " (U; A) with U € FRigEt/8.

Proof. This follows from Proposition 3.2.4. Indeed, the condition that 8" is (A, 7)-admissible implies
that s is (A, 7)-admissible. Moreover, if the numbers pvcd, (8”) are bounded independently of & for
admissible blowups 8’ — &, then the same is true for the numbers pved, (U) for the saturated rig-étale
neighbourhoods s — U — 8. O

3.3. Statement of the main result

Let 8 be a formal scheme. By Proposition 3.1.13, we have a monoidal functor
£9 : FSHE™ Y (8;A)® — RigSHE™ ™ (872, A)°.

From Corollary 3.4.2 below, we deduce that ysA underlies a commutative algebra in the monoidal

co-category FSH(TCH’A) (8; A)®, which we also denote by ysA. Moreover, the functor ys admits a
factorization

RigSH™ " (87ie; A) 255 pSHET Y (8 vA) 25 FSHE™ M (8: A),

where FSH(Teff’ N (8; xA) is the co-category of ysA-modules in FSH(TSH’ A (8; A)® and fT is the forgetful
functor. The functor yg admits a left adjoint

& : FSH™ Y (8; xA) — RigSH™ " (87 A)

that sends a ys A-module M to £g(M) ® ¢, vsa A. It will be important for us to know that the functors
&g, for § € FSch, are part of a morphism

€% : FSH™ Y (=3 xA)® — RigSHE™ " ()™ A)®

in the co-category PSh(FSch; CAl g(Pr")) of presheaves on FSch valued in CAlg(Pr"). The construction
of ¢® will be carried in Subsection 3.4 below. Before stating the main result of this section, we introduce
the following assumptions.

Assumption 3.3.1. We assume (at least) one of the following four alternatives:

(i) 7 is the Nisnevich topology;
(ii) moA is a Q-algebra;
(ili) We work in the nonhypercomplete case, A is eventually coconnective and every prime number
which is not invertible in mo is invertible on every formal scheme we consider;
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(iv) We work in the hypercomplete case, every formal scheme we consider is (A, T)-admissible and its
generic fiber is also (A, T)-admissible, and every prime number which is not invertible in moA is
invertible on every formal scheme we consider.

Moreover, under one of the alternatives (iii) or (iv), when we write ‘FSch’, we actually mean the full
subcategory of formal schemes satisfying the properties in (iii) or (iv), respectively.

Assumption 3.3.2. We assume that 7 is the étale topology and that one of the two alternatives (iii) or
(iv) above is satisfied.

Theorem 3.3.3.

(1) We work under Assumption 3.3.1. Given a formal scheme 8, the functor
£s : FSHV(S; yA) — RigSHY (8"¢; A)

is fully faithful.
(2) We work under Assumption 3.3.2. The morphism of CAlg(Pr™)-valued presheaves

7® . (N (_. ® : (N ig. A)®
£° i FSH,, " (= xA)® — RigSH " ((—)"8; A)

exhibits RigSH‘(ﬂA ) ((=)"ig; A)® as the rig-étale sheaf associated to FSH;IA) (= xN)®.

Remark 3.3.4. Our proof of Theorem 3.3.3 relies crucially on T-stability. Therefore, we do not expect
this theorem to hold for the effective co-categories of motives.

Remark 3.3.5. One can reformulate Theorem 3.3.3(2) as an equivalence between functors defined on
rigid analytic spaces. Indeed, by Corollary 1.4.13, we have an equivalence of sites

(RigSpcd®®, ét) — (FSch¥%, rigét).

Moreover, the left Kan extension of the CAlg(Pr")-valued presheaf FSH;A ) (=; xA)® along the functor
(—)"e : FSch¥°® — RigSpc°® is easily seen to be given by
S lim FSH{" (8; yA)®. 65
= goolm a (S1xA) (65)
(See Notation 1.1.9.) Thus, Theorem 3.3.3(2) implies that the morphism of CAlg(Pr")-valued presheaves
given by

(olim FSH." (8; xA)® — RigSH!"" (S; A)®

exhibits RigSHétA ) (—; A)® as the étale sheafification of the CAlg(Pr")-valued presheaf (65).

3.4. Construction of £®

We denote by Fin, the category of finite pointed sets. Up to isomorphism, the objects of Fin, are the
pointed sets {(n) = {1,...,n} U {*}, forn € N. For 1 <i < n, we denote by p’ : (n) — (1) the unique
map such that (p?)~' (1) = {i}. Recall that a symmetric monoidal co-category is a co-Cartesian fibration
C® — Fin, such that the induced functor (pf)i : Cny = Ili<i<n €1y is an equivalence for all n > 0.
We usually write ‘C,)’ instead of ‘Gf’m’ to denote the fiber of C® — Fin, at (n). The co-category €y
is called the underlying co-category of C® and is denoted by €. Recall also that a monoidal functor is
a morphism of co-Cartesian fibrations between symmetric monoidal co-categories, i.e., a functor over
Fin, which preserves co-Cartesian edges.
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We remind the reader that ‘monoidal’ always means ‘symmetric monoidal’ in this paper. We denote
by CAlg(CAT,) the co-category of (possibly large) monoidal co-categories and monoidal functors
between them. The following lemma is well-known.

Lemma 3.4.1. Let F® : C® — D® be a monoidal functor between monoidal co-categories. Then the
following conditions are equivalent.

(1) The underlying functor F admits a right adjoint G : D — C;
(2) The functor F® admits a right adjoint G® making the following triangle commutative

e@ ¢ D@

A

Fin,

with p and q the defining co-Cartesian fibrations.
Moreover, if these conditions are satisfied, we have the following two extra properties.

(a) The natural transformations
p—poG®oF®=p and qg=qoF®oG® — g,

induced by the unit and the counit of the adjunction (F®, G®), are the identity natural transforma-
tions of p and q.

(b) The functor G® is a right-lax monoidal functor (i.e., preserves co-Cartesian edges over the arrows
o' {n)y — (1) for 1 <i < n)and its underlying functor G 1y is equivalent to G.

Proof. Thisis contained in [Lurl7, Propositions 7.3.2.5 & 7.3.2.6, & Corollary 7.3.2.7]. We also remark
that property (a) is automatic. In fact, more generally, every invertible natural transformation of p is the
identity and similarly for q. m

Corollary 3.4.2. Let F® : C® — D® be a monoidal functor between monoidal co-categories, and
assume that F admits a right adjoint G. Then the induced functor

CAlg(F) : CAlg(C) — CAlg(D)

admits also a right adjoint, which is given by CAlg(G).

Proof. Let p : C® — Fin, and ¢ : D® — Fin, be the defining co-Cartesian fibrations. Recall that
CAlg(C) is the full sub-co-category of Sect(p) = Fun(Fin., C®) Xgun(Fin., Fin.) idrin, spanned by those
sections of p sending the arrows p' : (n) — (1), for 1 < i < n, to co-Cartesian edges and similarly
for CAlg(D). It follows that F® and G® induce functors CAlg(F) and CAlg(G) and that the unit and
counit of the adjunction (F®, G®) define natural transformations

id — CAlg(G) o CAlg(F) and CAlg(F) o CAlg(G) — id,

satisfying the usual identities up to homotopy. O

We now start our construction of g? ®. By Proposition 3.1.13, we have a morphism
£% : FSH{ Y (1 0)® — RigSHI™ "V ()8 0)°

in the co-category Fun(FSch, CAlg(CAT)). The formation of co-categories of commutative algebras
gives a functor CAlg(-) : CAlg(CATs) — CAT.. Applying this functor to £% yields a morphism

CAlg(€) : CAlg(FSH™ " (=1 A)) — CAlg(RigSH™ " ((-)"¢; A))
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in the co-category Fun(FSch?, CAT,,). Applying Lurie’s unstraightening construction [Lur09, §3.2] to
this morphism, we get a commutative triangle

FSch®P,
where pg and p; are co-Cartesian fibrations classified by
(eff, A) . . (eff, A) rig.
CAlg(FSH; (=) and CAlg(RigSH ((=)"8;A)),

and F is the functor induced by CAlg(¢). By Corollary 3.4.2, the fibers of F admit right adjoints. More
precisely, for § € FSch, the functor Fg = CAlg(£s) admits a right adjoint, which is given by CAlg(xs).
(Note that )(é@ is a right-lax monoidal functor.) Applying [Lurl7, Proposition 7.3.2.6], we deduce that
F admits a right adjoint G making the following triangle

FSch®P

commutative and such that, for every 8 € FSch, the functor G g is equivalent to CAlg(ys).

We now consider the co-categories Sect(pg) and Sect(p;) of sections of py and p;. The functor
G induces a functor G’ : Sect(p;) — Sect(pp). We have an obvious object 1 € Sect(p) such that
15 € CAlg(RigSH™ V) (8"i8; A)) is the initial algebra for every § € FSch. We set:

A=G'(1).

By construction, A is a section of the co-Cartesian fibration pg such that Ag is equivalent to ysA
considered as an object of CAlg(FSH(fﬁ’ A (8;A)). For a morphism f : T — § of formal schemes, the
induced morphism Ag — Aq in &g corresponds to a morphism f*Ag — Aq. This is the morphism
induced by the natural transformation f* o ys — yg o f'&* which one obtains by adjunction from the
equivalence f1% * o &g ~ & o f*. The following fact, which we record for later use, follows easily from
this description.

Lemma 3.4.3. Let f : T — 8§ be a morphism of formal schemes. For f to be sent to a po-co-Cartesian
edge by A, it suffices that the commutative square

FSHE™ Y (8 A) —255 RigSHE™ " (8rie; A)

J/f* J/frig,*

FSHE™ Y (T: A) —s RigSH®™ " (Trie; A)
is right adjointable. This happens when f is smooth.
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Proof. Only the last assertion requires a proof. If f is smooth, then there is a commutative square

FSHE™ V) (T, A) s RigSH ™" (Tmie; A)

lfﬁ lf’-irig

FSHE™ Y (85 A) — RigSHE™ ) (81i; A)

by Proposition 3.1.13. The natural transformation f* o ys — y7 o f1&* deduced from the square of
the statement via the adjunctions (¢s, xs) and (&7, yo) coincides with the natural equivalence deduced
from the above square via the adjunctions (s o fy, f* o xs) and (fiirlg o &, yg o flg¥). |

Before going further, we need a small digression about algebras and modules in general monoidal
oco-categories. Let C® be a monoidal co-category and p : €® — Fin, the defining co-Cartesian fibration.
By [Lurl7, §3.3.3], we may associate to €% a functor

f : Mod(C)® — Fin, x CAlg(C) (66)
such that, for each commutative algebra A of C®, the induced functor
fa: Moda(C)® = Mod(€)® Xcalg(e) {A} — Fin,, (67)

makes Mod4(€)® into an co-operad. This is the co-operad of A-modules, which is a monoidal co-
category whenever € admits enough colimits, and these colimits are compatible with the monoidal
structure. We recall below the construction of the simplicial set Mod(C)® which is a particular case of
[Lurl7, Construction 3.3.3.1].

Construction 3.4.4. Recall thatamap y : (m) — (n) is said to be inert (resp., semi-inert) if the induced
map y~'({1,...,n}) — {1,...,n} is a bijection (resp., an injection). The map 7 is said to be null if its
image is the base-point of (n). Let K ¢ Fun(A!, Fin,) be the full subcategory spanned by the semi-inert
maps. We have two obvious functors e, ¢; : K — Fin, induced by the inclusions {0}, {1} ¢ A'. Given
(m) € Fin,, a morphism ¢ in the fiber eal ({m)) of e at (m) is said to be inert if the map e;(d), which
belongs to Fin,, is inert.

We define a simplicial set Mod(C)® as follows. Giving a map A" — Mod(C)® is equivalent to
giving a map A" — Fin,, and a functor A" Xgi, ., K — C® making the triangle

A" Xpin, . ¢ K— C®

\ ll’
ejoprg

Fin,

commutative and such that the following condition is satisfied. For every vertex {i} ¢ A", the induced
functor {i} Xin,, ¢, K = C® takes an inert map to a p-co-Cartesian morphism.

There is a full inclusion Fin, X Fin, — K, sending a pair of objects to the null morphism between
them, which is a section to (eg, e;). This induces the functor (66). That the functor (67) defines an
oo-operad is a particular case of [Lurl7, Theorem 3.3.3.9]. According to [Lurl7, Theorem 4.5.3.1],
the functor (66) is a co-Cartesian fibration when € admits geometric realisations which are moreover
compatible with the monoidal structure. In this case, the functor (67) is also a co-Cartesian fibration,
and thus the co-operad Mod 4 (C)® is a monoidal co-category. (This is also stated explicitly in [Lurl7,
Theorems 4.5.2.1].)

Remark 3.4.5. It follows from Construction 3.4.4 that Mod(—)® defines a functor from CAlg(CAT,)
to CAT,, endowed with a natural transformation f : Mod(—)® — Fin, x CAlg(-). In fact, Construction
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3.4.4 shows more: Mod(—)® and f naturally extend to a larger co-category of monoidal co-categories
where the morphisms are given by right-lax monoidal functors.

Now, we go back to the situation we are interested in. We start again with our morphism &¢® in
Fun(FSch®?, CAlg(CATL)). Applying the functors Mod(—)® and CAlg(-), we obtain a commutative
square in Fun(FSchP, CAT.,):

. Mod ® .
Mod(FSH'™ " (=; A))® odte) Mod(RigSH™ " ((-)1g; A))®

a |

CAl .
Fin, x CAlg(FSH®™ Y (= A)) 29, Fin, x CAlg(RigSH®™ ") ((—)rig; A)).

Applying Lurie’s unstraightening construction [Lur09, §3.2], we get a commutative diagram

H®

® ®
R M,
q()l lm
. - F
Fin, x & Fin, x E;

Fin, x FSch®P.

The functors pg, p1, g0, g1, Po © go and p; o g are co-Cartesian fibrations. Indeed, for pg and p1, this
is by construction. For the remaining functors, this follows from the Lemma 3.4.6 below and [Lur09,
Proposition 2.4.2.3(3)].

Lemma3.4.6. Let C be an oo-categoryand £® : € — CAlg(CAT.) afunctor. Consider the commutative
triangle

M® —>F1I1* x D

obtained by applying Lurie’s unstraightening construction [Lur09, §3.2] to the morphism
Mod(&(-))® — Fin, x CAlg(&(-))

in Fun(C, CATw). We assume the following conditions:

o Forevery X € C, the co-category E(X) admits geometric realisations, and these are compatible with
the monoidal structure;
o For every morphism f : X — Y, the induced functor E(f) commutes with geometric realisations.

Then r is a co-Cartesian fibration.

Proof. By [Lurl7, Theorem 4.5.3.1], the morphism rx : M§ — Fin, X Dy is a co-Cartesian fibration
forevery X € C. Using [Lur(9, Proposition 2.4.2.11], we deduce that r is a locally co-Cartesian fibration.
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By [Lur09, Proposition 2.4.2.8], it remains to check that locally r-co-Cartesian morphisms are stable
under composition. Consider a commutative triangle in Fin, X D that we depict informally as

(v02. f02- b02)
({no), Xo, Ro) el o ((n2), X», R»)

(Vm mlz)

((n1), X1, Ry).

Here X;, for 0 < i < 2, are objects of C and f;; : X; — Xj, for 0 < i < j < 2, are morphisms
of C, each R; is a commutative algebra in €(X;) and each ¢;; : E(f;;)(R;) — R; is a morphism of
commutative algebras in £(X), and the v;;’s are maps in Fin,. From this triangle, we deduce a triangle
of co-categories

(Y02, fo2, P02

Modg, (€(X0))(no) Modg, (E(X2))(n,)

()’om‘ mn)z

Modg, (€(X1)) )

and we need to show that this triangle commutes up to equivalence. Using that the £( f;;)’s commute
with the tensor product of modules, one reduces easily to the case where np = n; = ny = 1 and ;; are
the identity maps. We are then left to check that

E(f12)(E(fo1) (=) ®e(fi) (Ro) R1) Be(fi2)(rRy) R2 = E(f02) (=) ®e (i) (Ry) R2s

which follows again from the fact that the £( f;;)’s commute with the tensor product of modules. o

Recall that we have constructed a section A : FSch®? — Fy together with a morphism FA — 1.
Using Lemma 3.4.6 and [Lur(9, Proposition 2.4.2.3(2)], we get co-Cartesian fibrations

Dy = MY Xz, 154 (A' X FSch®) — Al x Fin, x FSch®,

(Dl = EIR]® Xz, 1-5FA-1 (A2 X FSChOp) - A2 X Fin, X FSChOp,

and a morphism ®y — ®; x,> A{%!} induced by H®. Let us pause and describe informally what we
have constructed. For § € FSch, the co-Cartesian fibration (®y)s — A! x Fin, is classified by the
monoidal functor — ®, yA : FSH™ ™ (8:A)® — FSH™" (8: yA)®. Similarly, the co-Cartesian
fibration (®1)s — AZ X Fin, is classified by the commutative triangle

) - A s :
RigSH ™ " (81ig; A)® SEXR L RigSHE™ Y (8778 £y A)

\ l_%w

RigSH ™" (stig; A)®.
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Finally, applying Lurie’s straightening construction [Lur09, §3.2], we get the following commutative
diagram in the co-category Fun(FSch®?, CAlg(CATw)):

- A
FSH{™ " (=3 0)® — 2 FSHE™ Y (< yA)®

- .
RigSH\"™ " (=; A)®

The morphism E ® is then defined as the composition of
7o . pSHCE™ N (— v AV® £ RieSHET A (- o Pl o GHET N (L. A)®
&¢°  FSH; (= xA)® — RigSH-, (—;éxAN)® —— RigSH;, (—AN)°.

3.5. Descent, continuity and stalks, I1. The case of y A-modules

We gather here a few basic properties of the functor FSH(TCH’ N (=; xA)® and the natural transformation
£® constructed in Subsection 3.4.

Proposition 3.5.1. The contravariant functor
8 FSHI™ V(8 xA),  fo f

defines a t-(hyper)sheaf on FSch with values in Pr".

Proof. Fix an internal hypercover U, in the site (FSch, ), with U,, — U_; étale for every n € N, and
which we assume to be truncated in the nonhypercomplete case. We need to show that

FSH™Y (Us; yA) : Ay = A% — CATo

is a limit diagram. To do so, we use the fact that FSH(Teff’ N (Ue; A) is a limit diagram (by Proposition
3.2.1) and exhibit a natural transformation

FSHE™ Y (Us; xA) — FSHE™ " (145 A) (68)

satisfying the hypotheses of [Lurl7, Corollary 5.2.2.37]. To do so, we start with the obvious natural
transformation

—@®x yA : FSHET Y (= A) — FSHE™ Y (= yA),

that we restrict to Et/U_; and consider the morphism of co-Cartesian fibrations

A

Et/u_l
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associated to this natural transformation by Lurie’s unstraightening construction [Lur(09, §3.2]. Fiber-
wise, F' admits right adjoints. By [Lurl7, Proposition 7.3.2.6], we deduce that F' admits a right adjoint

G : § — J making the triangle
x /

Et/u,1

commutative and which is fiberwise given by the forgetful functor. We claim that G is in fact a morphism
of co-Cartesian fibrations, i.e., takes a g-co-Cartesian edge to a p-co-Cartesian edge and thus determines
a natural transformation

FSH™ ™ (=; yA) — FSHET M (=; A) (69)

on Et/U_; given objectwise by the forgetful functor. To prove this, we need to check that the square

— A
FSHE™ Y (v, A) —2X% L gsHE™ N (v; v A)

—@p XA
FSHE M (v, A) —2X% ggg ™ (v7; v A)

is right adjointable for every map e : V — V' in Et/U_;. This follows from Lemma 3.4.3 which implies
that e* yy A — xy A is an equivalence. That said, we define the natural transformation (68) to be the
restriction of the one in equation (69). That the hypotheses of [Lurl7, Lemma 5.2.2.37] are satisfied is
clear:

Hypothesis (1) of loc. cit. follows from Proposition 3.2.1;

Hypothesis (2) of loc. cit. follows from [Lurl7, Corollary 4.2.3.2];

Hypothesis (3) of loc. cit. is clear since the co-categories FSH(Teff’ ~ (Un; A) are presentable;
Hypothesis (4) of loc. cit., and more generally the right adjointability of the squares

O O O O

FSHg—eﬁ, A) (V;)(A) L> FSH.(reff’ A) ('VI;XA)

J |

FSH™ "V (V; A) —— FSH™ Y (v, ),

fore:V — Vin Et/u_l, is clear by construction.
This completes the proof. O

Lemma 3.5.2. The natural transformation
€% FSH™ Y (=3 xA)® — RigSH™ " ()™ 0)®

is a morphism in Fun(FSch®, CAlg(PrY)). Moreover, in the following two cases, if we restrict this
natural transformation to the subcategory V C FSch, we get a morphism in Fun(V°P, CAlg(Prl)).

(1) We work in the nonhypercomplete case, and if T is the étale topology, we assume that A is eventually
coconnective. In this case, we may take 'V to be the wide subcategory of FSch consisting of quasi-
compact morphisms.
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(2) We work in the hypercomplete case. In this case, V is the subcategory whose objects are those
formal schemes 8 such that 8"® is (A, T)-admissible and whose morphisms are the quasi-compact
and quasi-separated ones.

Proof. By [Lurl7, Theorem 3.4.4.2], FSH(:’ff’ A (8; ¥A)® is a presentable monoidal co-category for
every 8 € FSch. Moreover, the image of — ®y yA : FSH(Teﬂ" A)(S; A) — FSH(Teﬂ" N (8; ¥A) generates
FSH(Teff’ N (8; x¥A) by colimits. This follows from Proposition 3.1.14 since the right adjoint to — ® YA
is conservative by [Lurl7, Corollary 4.2.3.2]. By [Lurl7, Corollary 3.4.4.6], this right adjoint also
preserves all colimits, which implies that — ®5 y A preserves compact objects. In particular, we see
that FSH(Teff’ N (8; xA) is compactly generated when FSH(Teﬁ’ A (8; A) is. Thus, the second part of the
statement follows easily from Propositions 2.4.22 and 3.2.3. O

Our next goal is to prove the continuity property for FSH(Teﬁ’ ~ (=5 xN).

Theorem 3.5.3. Let (S4)q be a cofiltered inverse system of quasi-compact and quasi-separated formal
schemes with affine transition maps, and let 8 = limy, 8, be the limit of this system. We assume one of
the following two alternatives.

(1) We work in the nonhypercomplete case. When T is the étale topology, we assume furthermore that
A is eventually coconnective. A

(2) We work in the hypercomplete case, and 8 and 8" as well as the 8,’s and the 848’s are (A, T)-
admissible. When t is the étale topology, we assume furthermore that A is eventually coconnective
or that the numbers pved (8.) and pved, (84,°) are bounded independently of a.

Then the obvious functor

colim FSH™ M (8,; yA) — FSHET Y (8; yA), (70)
(e

where the colimit is taken in Pr*, is an equivalence.

Remark 3.5.4. Compared to the analogous statements for rigid analytic and formal motives (see Theo-
rem 2.5.1 and Proposition 3.2.4), we have to assume, in the nonhypercomplete case, that A is eventually
coconnective when 7 is the étale topology. This is due to Lemma 3.5.7 below, that we were only able
to prove under this extra assumption which insures the compact generation of the co-categories of
xA-modules in formal motives.

We will obtain Theorem 3.5.3 as a consequence of Theorem 2.5.1 and Proposition 3.2.4. To do so, we
need some oco-categorical facts. We start with the following result, which is well-known but for which
we couldn’t find a reference.

Lemma 3.5.5. Let C® be a monoidal co-category admitting colimits which are compatible with the
monoidal structure. Then, the forgetful functor ff : Mod(C) — C commutes with filtered colimits.

Proof. By [Lurl7, Theorem 4.5.3.1], we have a co-Cartesian fibration Mod(€) — CAlg(C). By [Lurl7,
Corollary 3.4.4.6(2)], for every A € CAlg(C), the oo-category Mod,(C) admits colimits and the
forgetful functor ff4 : Mod4(C) — C is colimit-preserving. Also, the base change functor Mod (C) —
Modpg(€), associated to a morphism A — B in CAlg(C), is colimit-preserving since it admits a right
adjoint. Moreover, by [Lurl7, Corollaries 3.2.3.2 & 3.2.3.3], the co-category CAlg(C) admits colimits
and the forgetful functor CAlg(C) — C preserves the filtered ones. Using [Lur09, Proposition 4.3.1.5(2)
& Corollary 4.3.1.11], we deduce that Mod(€) admits colimits and that they are computed as follows. Let
p : K — Mod(C) be a diagram, and let ¢ : K — CAlg(C) be the diagram obtained by composing with
the forgetful functor. Let A, € CAlg(C) be a colimit of ¢, and let p’ : K — Mod,4_ (C) be a diagram
endowed with a morphism p — p’ in Mod(C)X given by co-Cartesian edges. (See the beginning of the
proof of [Lur(09, Corollary 4.3.1.11].) Then, the colimit of p is equivalent to the colimit of p’ computed
in Mody4_ (C).
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Now assume that K is a filtered partially ordered set, and let L be the subset of K X K consisting of
those pairs (i, j) withi < j. We endow L with the induced order. Consider the commutative square

K —2— Mod(€)

|, |

L —2 cAlg(e),

where the vertical left arrow is the diagonal map given by i +— (i,i) and § is the diagram obtained
by composing g with the map L — K given by (i, j) — j. Let p : L — Mod(C) be the relative left
Kan extension (in the sense of [Lur(9, Definition 4.3.2.2]). Setting A; = ¢(i) and M; = p(i), we have
informally p(i, j) = Aj ®4, M;. The diagrams p and p have the same colimits, so it is enough to show
that ff(colim p) =~ colim ff o p. Now, a colimit over L can be computed as a double colimit

colim =~ colim colim.

(i,j)eL ieK jekK;,
Moreover, since the diagram i +— colim ¢, P (i, ) lands in Mod 4 _, (©), its colimit commutes with ff4_
as mentioned above. Thus, it is enough to prove the statement for the diagrams p (i, —) : K;; — Mod(C).
Said differently, we may assume that p takes an edge of K to a co-Cartesian edge of the co-Cartesian
fibration Mod(C) — CAlg(C).

We may assume that K has an initial object 0 € K. We have a natural transformation between the

following two functors Mody,, (€) — €.

(1) The first one sends M € Mod,4, (C) to the colimit in C of the diagram i > ft4, (A; ®4, M).
(2) The second one sends M € Mody,, (€C) to ff4, (Acw ®a, M).

We want to show that this natural transformation is an equivalence. (Together with the description of
colimits in Mod(C) given at the beginning, this would complete the proof.) To do so, we remark that
the two functors above are colimit-preserving. Using [Lurl7, Proposition 4.7.3.14], we reduce to show
that this natural transformation is an equivalence on A,-modules of the form A, ® M, with M € C. In
this case, we have to show that the morphism

cgﬂ}{m f(A; @ M) — fT(Ae ® M)
1€

is an equivalence. This is clear since CAlg(C) — € commutes with filtered colimits. O

Before stating the next co-categorical result, we introduce some notation. Let € be an co-category
and £® : C — CAlg(Pr") a functor. Consider the commutative triangle

Fin, x D

Me .

Fin, x C

obtained by applying Lurie’s unstraightening construction [Lur(09, §3.2] to the functor sending X € C
to the commutative triangle

Mod(€(X))® Fin, x CAlg(&(X))

>~

Fin,.
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By Lemma 3.4.6 and [Lur09, Proposition 2.4.2.3(3)], the maps p, g and r are all co-Cartesian fibrations.
Assume that we are given a section A of the co-Cartesian fibration p : D — €, and consider Mi =
M® X, 4 C. The obvious functor M;‘f — Fin, x € is a co-Cartesian fibration. By Lurie’s straightening
construction [Lur09, §3.2], it determines a functor

Mod,(€)® : @ — CAlg(Pr).

For proving Theorem 3.5.3, we will use the following general result.

Lemma 3.5.6. Assume that C is filtered, and set € = colime E®. (Here and below, the colimit is taken
in CAlg(Pr™).) Let A : C — CAlg(€w) be the composition of the section A with the obvious functor
D — CAlg(Ew), and set A, = colim A. Then there is an equivalence

cogmModA(c‘Z)@ ~Mody_ (Ex)®. (71)

Proof. By [Lurl7, Corollary 3.2.3.2], the forgetful functor CAlg(Pr") — Pr" detects filtered colimits.
Therefore, it is enough to prove that

colimMod4 (€) — Mody_ (Ew)

is an equivalence, where the colimit is taken in Pr™. By [Lurl7, Corollary 4.5.1.6], the co-category
Mod () (€(c)) is equivalent to the co-category LMod4(.) (€(c)) of left-A(c)-modules, for every ¢ € C,
and similarly for Mod,4_ (). In fact, [Lurl7, Corollary 4.5.1.6] shows also that the functor Mod4 (&) :
€ — Pr" is equivalent to the functor LMod4(€) : € — Pr" which is constructed similarly as above.
More explicitly, one applies Lurie’s unstraightening construction [Lur09, §3.2] to the functor sending
¢ € C to the functor LMod(&E(c)) — Alg(E(c)) (see [Lurl7, Definition 4.2.1.13 & Example 4.2.1.18])
to get a morphism of co-Cartesian fibrations

we —

Then, the functor LMod4 (€) is obtained by applying Lurie’s straightening construction [Lur(09, §3.2]
to the co-Cartesian fibration M, = M’ X 4 € — C. That said, we are left to show that

cogm LMod (&) — LModa_ (Ew) (72)

is an equivalence, where the colimit is taken in Pr. Using the functor © : PrA¢ — PrMod of [Lur17,
Construction 4.8.3.24 & Notation 4.8.5.10] and the forgetful functor ff : PrM°d — Prl, we may rewrite
the functor (72) as

cogmffo@(a,A) — T 0 O(Eeo, Aco). (73)

We give below an informal description of the objects we have just introduced and refer the reader to loc.
cit. for the precise definitions:

o Pre is the co-category whose objects are pairs (X®, R) consisting of a presentable monoidal
oco-category X® and an associative algebra R € Alg(X);

o PMod ~ [ Mod(Pr") is the co-category whose objects are pairs (X®,Y) consisting of a presentable
monoidal co-category X® and an X®-module Y in Prl> ®
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o O sends (X®, R) to (X®, Modg (X)) and ff sends (X®,Y) to Y;
o (&, A) denotes the functor € — PrA'¢ given informally by ¢ — (&(c), A(c)).

By Lemma 3.5.5, the functor ff commutes with ﬁltg\red colimits. Using [Lurl7, Theorem 4.8.5.11]
and [Lur09, Proposition 4.4.2.9], we deduce that ® commutes also with filtered colimits. Since
colime (€, A) =~ (£, A), this proves that the functor (73) is an equivalence. O

Using Proposition 3.2.4, Lemma 3.5.6 and the construction of the functor FSH(Teﬁ’ A (=3 x\), we see
that Theorem 3.5.3 is a consequence of the following lemma.

Lemma 3.5.7. With the notation and assumptions of Theorem 3.5.3, we have an equivalence
colim f xs, A — xsA
a

in FSH(Teﬁ’ N (8; A), where fo : 8 — 8 is the obvious map.

Proof. Under the assumptions of Theorem 3.5.3, Theorem 2.5.1 and Proposition 3.2.4 provide us with
equivalences in Prl)

colim RigSH'*™ " (81€; A) ~ RigSH'*™ " (81i2; A) (74)
and colimFSH™ Y (8 ,: A) =~ FSHE™ M (8 A), (75)
a

where the colimits are also taken in Pr(LU. (See Propositions 2.4.22 and 3.2.3.) In particular, the co-

category FSH(Teﬂ’ ~ (8; A) is compactly generated, and it suffices to show that a compact object M in
this co-category induces an equivalence

MapFSngrf. M (8:A) (M, co(llim faxs,A) — MapFSngrf. M (8:A) (M, xs\). (76)

For B < a, we denote by fz, : S — 8, the transition map in the inverse system (8)q. Since M is

compact, there exists an index p and a compact object M,, € FSH(TeH’ A (8psA) such that M = fyM,,.
We have canonical equivalences:

. X Q)] . "
MapFSH‘(reﬁ‘,/\) (8;A) (M’ CO(lllm fa/ XSq A) = Cozlxlm MapFSHEFeﬁ',A) (8:A) (M, fa XS(,A)

(2 . . * %
~ colim colim MapFSH(Tem) (Sﬁ;A)(fﬁpMp’ fp,a)(gd/\)

a<p B=a
(3 . "
~ Cglslzn MapFSH(Teﬂf,A)(Sﬁ;A) (prMp, XSBA)

(4) .

~ colim Ma
B<p

(5)

" X rig, *
~ MapRigSH(fﬂ’A)(S”g;/\) (fp fSpMp,A)

X . rig, *
Prigsuie™ ") (st ) (fpp 68, Mp> )

(6)
~ MapFSH(Teﬂ; A) (8:A) (M,/\/g/\)

where

(1) follows from the assumption that M is compact,
(2) follows from the fact that the colimit in equation (75) is taken in Pr%u,
(3) follows from the cofinality of the diagonal map 8 +— (8 < f),
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(4) follows from the adjunction (£s,, s B) and the commutation s, fgp ~ [:’f *fgp,
(5) follows from the fact that the colimit in equation (74) is taken in PrI;),

(6) follows from the commutation f* "&s, = £s f; and the adjunction (£, xs).
It is easy to see that the composition of the above equivalences coincide with the map (76). O

Remark 3.5.8. Lemma 3.5.7 admits a useful extension as follows. Keep the notation and assumptions
of Theorem 3.5.3. Let I be the indexing category of the inverse system (S, )4, and let @ — N, be a
section of the co-Cartesian fibration associated to the functor I°? — CAT,, @ — RigSH(Teﬁ’ A (Siiyg; A).
LetN € RigSH(:’ff’ A (8"2; A) be the colimit of the f(r,ig’ “N,’s. Then there is an equivalence

colim £} xs,Na = xsN
(o4

in FSH(TeﬁV’ ~ (8; A). This is shown using exactly the same reasoning as in the proof of Lemma 3.5.7.

We finish this subsection with a computation of the stalks of FSH(Teff’ A)(—; xA) for the topology
rig-t on FSch.

Theorem 3.5.9. Let S be a formal scheme and let s — 8 be an algebraic rigid point of 8. Assume one
of the following two alternatives.

(1) We work in the nonhypercomplete case, and if T is the étale topology, we assume that A is eventually
coconnective.

(2) We work in the hypercomplete case, and 8 and 8¢ are (A, T)-admissible. When 7 is the étale
topology, we assume furthermore that A is eventually coconnective or that the numbers pved, (8”),
for admissible blowups 8’ — 8, are bounded independently of 8’.

Then there is an equivalence of co-categories

FSH(™ " (= xA)s = FSHE™ " (55 )
where the left-hand side is the stalk of FSH(TEE’ A (= xA) at s, i.e., the colimit, taken in Pr¥, of the
diagram (s — U — 8) — FSH™™ (U; yA) with U € FRigEt/8.

Proof. This follows from Theorem 3.5.3. Indeed, the condition that 8"¢ is (A, 7)-admissible implies
that s is (A, 7)-admissible. Moreover, if the numbers pved, (8”) are bounded independently of & for
admissible blowups 8’ — &, then the same is true for the numbers pved, (U) for the saturated rig-étale
neighbourhoods s — U — 8. O

3.6. Proof of the main result, I. Fully faithfulness

Our goal in this subsection is to prove the first part of Theorem 3.3.3 concerning the fully faithfulness of
the functor Eg,. (The second part of this theorem will be proved in the next subsection.) A key ingredient
is a projection formula for the functor yg as in the following statement. This projection formula is also
a key ingredient in the proof of the extended proper base change theorem for rigid analytic motives, see
Theorem 4.1.4 below.

Theorem 3.6.1. We work under Assumption 3.3.1. Let 8 be a formal scheme, and set S = 8"8. Then, for
M e RigSH(TA) (S;A)and N € FSH(TA) (8; A), the obvious map

xs(M)®N — xs(M ® £s(N)) )

is an equivalence.

We first prove the following reduction.
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Lemma 3.6.2. To prove Theorem 3.6.1, it is enough to consider the alternatives (i), (ii) and (iv) of
Assumptions 3.3.1. Moreover, when working under the alternative (iv), we may assume the following
extra conditions:

(1) T is the étale topology;

(2) A is the Eilenberg—Mac Lane spectrum associated to the ring Z/{, with € a prime number invertible
on8;

(3) M and N are compact objects.

Proof. We split the proof into two parts.

Part 1
Here we show that the conclusion of Theorem 3.6.1 holds under (iii) if it holds under (iv).

We work under the alternative (iii). The problem is local on 8. Thus, we may assume that 8 is affine,
given as a limit of a cofiltered inverse system (8,), of affine formal schemes such that the §,’s and
their generic fibers S, = 8,¢ are (A, 7)-admissible. By Theorem 2.5.1 and Proposition 3.2.4, we have
equivalences

colimRigSH, (S,; A) =~ RigSH, (S; A) and colimFSH,(8,;A) =~ FSH,(S; A)
a a

in Pr", and the colimits are taken in Pr". Using that the tensor product of Pr commutes with filtered
colimits, we deduce an equivalence

colim (RigSH, (S4; A) ® FSH.(84;A)) ~ RigSH, (S; A) ® FSH, (S; A).
a

Since the functors &g, and ys,, belong to Pr! and are in adjunction and since &g is the colimit of the
&s,,’s, we deduce that yg is the colimit of the ys ,’s. (Here we use Propositions 2.4.22 and 3.2.3 to view
¢s and the &g, ’s as functors in Pr%J with colimit-preserving right adjoints.) Considering ys(-) ® ()
and ys(— ® £s(—)) as functors from RigSH_ (S; A) ® FSH(S; A) to FSH,(8; A) and similarly with
‘8 instead of ‘8, it follows that the natural transformation ys(—) ® (=) — ys(— ® &s(-)) is the
colimit of the natural transformations ys,(—) ® (=) — xs,(— ® &s,,(—)). This reduces us to treat the
case where S and S are (A, 7)-admissible. But in this case, we have

RigSH, (S; A) =~ RigSH’ (S; A) and  FSH,(8;A) ~ FSH,(S; A)

by Propositions 2.4.19 and 3.2.2. Therefore, this case is covered by the alternative (iv).

Part 2
Here we assume that the conclusion of Theorem 3.6.1 holds under (i) and (ii), and we show that we may
assume conditions (1), (2) and (3) when proving Theorem 3.6.1 under (iv).

Assume the alternative (iv). If 7 is the Nisnevich topology, then there is nothing to prove since
Theorem 3.6.1 holds under (i). Thus, we may assume that 7 is the étale topology. By Propositions 2.4.22
and 3.2.3, the co-categories RigSHZ, (S; A) and FSHZ (8; A) are compactly generated, and the functor
X s commutes with colimits (since its left adjoint is compact-preserving). This will be used freely in the
discussion below.

Let Mg = M ® Q and Ng = N ® Q be the rationalisations of M and N, and let M;,, and N, be
the fibers of M — Mg and N — Ngq. Since Theorem 3.6.1 holds under the alternative (ii), we deduce
that the morphism (77) becomes an equivalence if we replace M by Mg or N by Ng. Thus, it remains
to show that the morphism (77) becomes an equivalence if we replace M and N by M, and N;.
Now, My is a coproduct of {-nilpotent objects, where ¢ varies among the prime numbers which are
not invertible in myA, and similarly for N;. Moreover, every {-nilpotent object is a colimit of compact
{-nilpotent objects. Thus, it is enough to show that the morphism (77) is an equivalence when M and N
are {-nilpotent compact objects.
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By Theorems 2.10.3, 2.10.4 and 3.1.10, we have equivalences of co-categories

Shv, (Bt/S; A)rnit = RigSHL(S; A)ent and  Shv (Bt/S; A)enit = FSHS(S; A)gonit.
We denote by My and Ny the objects of Shvé\t(Et/ S5 A)g-nit and ShvéAt(Et/S; A)¢-nil corresponding to M
and N by these equivalences. It is enough to show that

xs(Mo) ® No — xs(Mp ®x &s(Np)) (78)

is an equivalence. (Here & is the inverse image functor associated to the morphism of sites (Et/S, ét) —
(Et/8, ét) given by (—)"¢, and ys is its right adjoint.) Since M, and Ny are compact, they are eventually
connective. It follows from Lemmas 2.4.5 and 2.4.11 (and the analogue of the latter for schemes) that
we have equivalences

1

xs(Mp) ®x Ny
xs (Mo ®x €s(No))

lim ys (Mo ® 7<) ®A No
I
1i;nXs((M0 ®a T<rA) ®p €s(Np)).

1

Thus, it is enough to show that the morphism (78) becomes an equivalence if we replace M, by
My ®a T<-A. The latter, being a compact object of Shvé\t(Et/ S; 7<), is eventually connective and
coconnective. Thus, if we momentarily renounce on having My compact, which we do, we may assume
that My is eventually connective and coconnective. By an easy induction, we may even assume that
M, is in the heart of Shvg(Et/ S; A) and that ¢ acts by 0 on My, i.e., My is an ordinary étale sheaf of
mo/A/€-modules.

Furthermore, we may take Ny = Ag (U) /¢, with U an étale formal S-scheme since the objects of this
form and their desuspensions generate Stht(Et/ 8; A) under colimits. In this case, we have

xs(Mo) ®x No = xs(My) ®z Zg(U) /L
~ xs(Mo) ®z/¢ (Zs(W) /€ ® Zs (W) /€[1]),

Xxs(Mo ®p és(No)) = xs(Mo ®z Es(Ze (W) /)
= xs(Mo ®z/¢ és(Zar (W) /€ @ Zg (W) /L[1])).

This shows that we may assume that A = Z/¢ as claimed. It remains to replace M, by a compact étale
sheaf of Z/£-modules to finish the proof. O

To prove Theorem 3.6.1, we need some preliminaries. We start by introducing a new co-category of
motives. Let 8 be a formal scheme, and fix a topology 7 € {nis, ét}.

Definition 3.6.3. We define the co-category FSH(TCH’ A)(S; A) by repeating Definitions 3.1.1 and 3.1.3
while replacing FSm/8 with the category FRigSm/8 of rig-smooth formal S-schemes (see Definition
1.3.13 and Remark 1.4.14).

Remark 3.6.4. There are functors relating FSH(Teﬁ’ A (8; A) to other co-categories of motives considered
before. Below, we set as usual S = 8",

(1) The inclusion functor tg : FSm/8 — FRigSm/S§ induces an adjunction
it FSHE Y (8;A) 2 FSHE™ Y (83 A) s ..
The functor ¢g . is induced by the restriction functor along ts, and the functor ¢ is fully faithful
and underlies a monoidal functor.

(2) The functor (—)"¢ : FRigSm/8 — RigSm/S induces an adjunction

Zg : FSHE™ " (8; A) 2 RigSHE™ ™ (5; A) : ¥s.
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By Remark 2.1.14, Es is a localisation functor, and )y g is fully faithful and identifies the co-category
RigSH ™" (5; A) with the full sub-co-category of FSH"™ ") (8; A) spanned by those objects
admitting rig-7-(hyper)descent.
Clearly, we have natural equivalences ég =~ Es otgand ys ~1g, .0 Xg-
We record the following lemma for later use.

Lemma 3.6.5. The functor tg_. underlies a monoidal functor

(@ FSH™ MV (8:4)® — FSHE™ Y (8:0)® (79)
which belongs to CAlg(Pr").
Proof. The functor

ts,« : PSh(FRigSm/8; A) — PSh(FSm/S; A) (80)

underlies a monoidal functor L? . and admits a right adjoint. (Recall that the tensor product on

presheaves is given objectwise; see Remarks 2.1.5 and 2.1.6.) Moreover, it commutes with the
7-(hyper)sheafification functor. Indeed, restricting to the small sites (Et/ X, 1), for X in FSm/S§ (resp.,
FRigSm/8), detects 7-(hyper)sheaves and 7-local equivalences in the hypercomplete and nonhypercom-
plete cases. It follows that the functor (80) induces a left adjoint functor

is.. : Shvi™ (FRigSm/8; A) — Shv{V (FSm/S; A) (81)

underlying a monoidal functor. Moreover, for X a smooth formal S-scheme, we have an equivalence
ts. (A7 (X)) = A (X). Using [Lur(09, Proposition 5.5.4.20], it follows that the functor (81) preserves
Al-local equivalences inducing a left adjoint functor

ts. . : FSH™ (M (8: A) - FSHE™ (M (8: A) (82)
underlying a monoidal functor. This functor sends Tg to Ts, and induces a left adjoint functor
ts.. : FSHY (8; A) — FSHY (8; A) (83)

underlying a monoidal functor. From the above discussion, we see that the functors (82) and (83) are
right adjoint to the functors ¢ in Remark 3.6.4(1), finishing the proof. O

Remark 3.6.6. There is also an obvious functorial dependence of FSH(TCH’ A (8; A) on the formal scheme
8. A morphism of formal schemes f : T — § induces an inverse image functor

£ FSHE™ M (8; A) — FSHE™ Y (T3 A)
which is a left adjoint and underlies a monoidal functor. Moreover, we have natural equivalences
frog=iyoft and  fiToFg=Eyof".

When f is rig-smooth, f* admits a left adjoint fy and there is a natural equivalence £g0 fo = f;ig 0&q.
If f is smooth, we also have a natural equivalence g o fy = fy o (.

We now state the main technical result needed for proving Theorem 3.6.1.

Proposition 3.6.7. Let 8 be a formal scheme, and set S = 8"8. Let M and N be objects of RigSH(TA) (S;A)
and FSHg.A) (8; A), respectively. We work under one the alternatives (i), (ii) or (iv) of Assumption 3.3.1,
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and when working under (iv), we assume the conditions (1), (2) and (3) of Lemma 3.6.2. Then, the
obvious morphism

Xs(M) ® 15(N) = xs(M @ &s(N)) (84)

is an equivalence in FSH(TA) (8; ).
We first explain how Theorem 3.6.1 follows from Proposition 3.6.7.

Proof of Theorem 3.6.1. By Lemma 3.6.2, we may work under one the alternatives (i), (ii) or (iv) of
Assumption 3.3.1 and assume the conditions (1), (2) and (3) of Lemma 3.6.2 when working under (iv).
Then, we have a chain of equivalences

xs(M) &N 2 15.(Ts(M)) ® 15 (15(N))

D s (Ts (M) ® 5 (N))
D s (T (M ® £5(N)))

4)
~ xs(M ®&s(N))
where

(1) follows from the equivalence xs = tg,. © xg and the fully faithfulness of g,
(2) follows from Lemma 3.6.5,

(3) follows from Proposition 3.6.7,

(4) follows from the equivalence ys =~ ts . o xg.

It is easy to see that the composition of the above equivalences coincides with the natural morphism
Xs(M)® N — xs(M ®&s(N)). o

Proof of Proposition 3.6.7. The morphism (84) is given by the following composition

Ts(M) @ 5 (N) 15 TsEs (s (M) ® (5 (N))

2 — —

D FsEsts(M) @Esiy(N))
Y Ts(M e és(N)),

where the equivalence (2) follows from the fact that Es is monoidal, and the equivalence (3) follows from

the fact that y g is fully faithful and the equivalence s =~ &g ocg. Thus, to prove the proposition, it remains
to show that the morphism (1) is an equivalence. This would follows if the object £ = y'g (M) ® (5 (N)

belongs to the image of the functor yg. Recall that the latter identifies RigSHﬁA) (S; A) with the full
sub-co-category of FSH(TA) (8; A) spanned by those objects admitting rig-7-(hyper)descent. Thus, we
need to show that E is local with respect to morphisms of the form

colimM(Us) — M(U_y), (85)
[n]eA

and their desuspensions and negative Tate twists, where U, is a rig-7-hypercover which we assume to be
truncated in the nonhypercomplete case. (Here U_; is a rig-smooth formal 8-scheme and U,,, forn € N,
are rig-étale over U_;.) Since M and N are general objects of RigSH.(,A) (S;A) and FSH.(,A) (8; A, itis
enough to show that E is local with respect to the morphism (85) without worrying about desuspensions
and negative Tate twists. By a standard argument, the case of a rig-r-hypercover U follows if we can
treat the cases of a rig-7-hypercover U’ refining U and its base change to each of the U,,’s. Using the
description of rig-t-covers given in Remark 1.4.14 and Proposition 1.4.19, we may thus assume that U,
satisfies the following, according to the cases T = nis and 7 = ét.
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(nis) The morphism of formal simplicial schemes U, — U_; (here > 0) factors through an admissible
blowup U_; — U_y, and the resulting morphism U, — U_; is a Nisnevich hypercover of U_;
which is truncated in the nonhypercomplete case.

(ét) The morphism of formal simplicial schemes U, — U_; (here @ > 0) factors through an admissible
blowup U-; — U_y, and the resulting morphism U, — U_; factors as

2) ~ 1 ~
w2 Y,

where (1) is a Nisnevich hypercover of ﬁ,l which is truncated in the nonhypercomplete case and
(2) is a relative hypercover for the topology generated by finite rig-étale coverings (in the sense of
Definition 1.4.16(3)) which is also truncated in the nonhypercomplete case.

We denote by ‘rigfét’ the topology on formal schemes generated by finite rig-étale coverings. Since E
admits Nisnevich (hyper)descent by construction, we see that the result would follow if we can prove the
following two properties (where we denote by M : FRigSm/§ — FS_H(TA) (8; A) the ‘associated motive’
functor as in Definitions 2.1.15 and 3.1.3):

(A) E is local with respect to morphisms M(V) — M(U), where V — U is an admissible blowup;
(B) If 7 is the étale topology, then E is local with respect to morphisms of the form

colimM(V,) - M(V_y), (86)
[n]eA

where V, is a hypercover for the topology rigfét, which we assume to be truncated in the nonhy-
percomplete case.

We split the rest of the proof into several parts. In the first part, we prove property (A). In the second
part, we establish a preliminary fact for proving property (B). In the remaining parts, we prove property
(B) assuming one of the alternatives (ii) or (iv) in Assumption 3.3.1.

Part 1

Here we prove property (A). We start by introducing some notations. We denote by f : U — 8 the
structural morphism and by e : V — U the admissible blowup, and we set g = f o e. Since M(U) = fA
and M(V) = ggA (see Remark 3.6.6), it is enough to show that the obvious morphism

Mapm(f/\) (U A) (A5 f*E) - Mapmg) (V;A) (A’ g*E)
is an equivalence. This map can be identified with
MapFSH(T/\) A (A, wy, *f*E) — MapFSH(TA) (Vi) (A, Ly, *g*E)

which is induced by a morphism ¢y, . f*E — ety .g"E in FSH(TA) (U; A), and it is enough to show that
the latter is an equivalence. We have a chain of equivalences

0 FE = e (Ts(M) @ (V)
1
Y (L f T (M) @ (. £ (N)
2 .
2 (e (M) ® (),

where (1) follows from Lemma 3.6.5 and (2) follows from the natural equivalences
ffoxs=Xuof ™", wu.oxu=xu flols=igof and ug.o ~id.
The same applies with “V” and ‘g’ instead of “U” and ‘f’. Thus, we are left to show that the morphism

Xu (& (M)) ® f*(N) — e.(xv(g"®*(M)) ® g*(N))
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is an equivalence. Since e is a projective morphism, we may use Theorem 3.1.10 and the projective
projection formula for algebraic motives (see [Ayo07a, Théoréme 2.3.40] and Proposition 2.2.12(1) in
the rigid analytic setting) to rewrite the above morphism as

xu(f™8 (M) ® f*(N) — e.(xv ("8 (M))) ® f*(N).

The result follows now from the commutation e, o yy = yq( o efg and the fact that "€ : Vg — U1€ g
an isomorphism (which implies that e, o g"&-* ~ frig. ),

Part 2
Until the end of the proof, T will be the étale topology. In this part, we formulate a property which
implies property (B) for a fixed hypercover V,; see property (B’) below.

For n > —1, we denote by g, : V,, —» S and e, : V,, — V_; the obvious morphisms. As in the first
part, we need to prove that

Mapggy) (yp_,; p) (A v, 87 E) — i Mappsr() (v,,;a) (A, <80 E)

is an equivalence. As explained in the first part, we have an equivalence
1, +8hE = xv,(gn® " (M) @ g}, (N),

and it is enough to prove that

xv_, (8™ (M) ® " (N) — Jim, en, *(XV (gn® *(M))‘X’g;(N))

is an equivalence in FSHétA) (V_1; A). Since e,  is a finite morphism, we may use Theorem 3.1.10 and
the projective projection formula for algebraic motives to rewrite the above morphism as

x50 @ g7 (N) = lim (e, (v, (6 (M) @87, (V)
= Jim (rv (€G5O @ 87, ()

: [};]rgA(ml (eh.en (g™ (M) © 87, (V).

Since g% * (M) belongs to ngSH(A) (V"%; A), it admits (hyper)descent with respect to V4%, Using that
Xv_, is aright adjoint functor, we deduce that the morphism

rig, *

xv_, (&7 (M) — [iijnelAw,l(eZ‘g*eﬂg (88" (M)))

is an equivalence. Thus, we see that property (B) follows from the following property:

(B') Set A* = yy_, (€i%,e0® *(g"g "(M))) and B = g* | (N). Then, the obvious morphism

lim A")® B — lim (A" ® B 87
(nAD e B = pnate s a

is an equivalence in FSHétA ) (V_13AN).

Part 3
Here we prove property (B) assuming that mgA is a Q-algebra.

For a formal scheme X, the site (FRigEt/X, rigfét) has zero global and local A-cohomological
dimensions. Indeed, let F be an ordinary rigfét-sheaf of Q-vector spaces on FRigEt/X. For every finite
rig-étale covering X" — X’ in FRigEt/X, there is a normalised transfer map F(X”) — F(X’) which
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is a section to the restriction map. (This map can be constructed rigfét-locally on X’, and thus we may
assume that X"’ is isomorphic to a finite coproduct of copies of X’.) Using these normalised transfer
maps, one can show that the Cech cohomology of X with values in F vanishes in degrees > 1. More
precisely, given a finite rig-étale cover X’ — X, one can build, using the normalised transfer maps, a
contracting homotopy from F(X,), where X/, is the Cech nerve of X’ — X, to the constant simplicial
complex F(X). We leave the easy details to the reader. By Corollary 2.4.6, it follows that every rigfét-
sheaf of A-modules on FRigEt/X is automatically a rigfét-(hyper)sheaf. (Indeed, although A is not
assumed to be eventually coconnective, the condition that moA is a Q-algebra implies that there exists
a morphism of commutative ring spectra Q — A, and thus we may replace A by Q in order to apply
Corollary 2.4.6.)

By the above discussion, it is enough to check property (B) when V, is the Cech nerve associated to a
finite rig-étale covering eg : Vo — V_1. Moreover, we may assume that the formal V_;-scheme V, admits
an action of a finite group G which is simply transitive on the geometric fibers of egg : Vgg - \7?‘%. The
Cech nerve V, can be refined by the following rigfét-hypercover

~'-V0XGXG§V0XG:;V04>V_1. (88)

Since the latter has the same form when base-changed to each V,,, we are left to prove property (B) with
the hypercover (88) instead of V,. As explained in the second part, it suffices to prove property (B’) for the
hypercover (88). In this case, the cosimplicial object A* defines an action of G on A? € FSHg\) (V_1;N),
and we may rewrite equation (87) as

(A ® B — (A’ ® B)°.

That this is an equivalence follows from the fact that taking the ‘G-invariant subobject’ in a Q-linear
co-category is equivalent to taking the image of the projector |G|~' Y, 2¢G 8-

Part 4
Here we prove property (B) under the alternative (iv) and assuming conditions (1), (2) and (3) of Lemma
3.6.2.

By Theorems 2.10.3, 2.10.4 and 3.1.10, we have equivalences of co-categories

Shvj, (Bt/X";Z/¢) ~ RigSH,(X"%;Z/¢)  and  Shv} (Et/X;Z/¢) ~ FSH(X;Z/C)

for every formal S-scheme X. Let M, € ShVQt(Et/DC“g;Z/f) and Ny € Shvé\t(Et/f)C; Z/{) be the étale

rig  rig, *

hypersheaves corresponding to M and N by these equivalences. Set AJ = xv_, (€s €o (gr_“f’ *(Mp)))
and By = g" (No). We need to prove that

lim Aj) ® B lim (Aj ® B 89

([HIJIEA 0) ® By — [nljnelA( o ® Bo) (89)

is an equivalence in Shvgt(lét/\?_l;Z/f). We will do this by proving that the morphism (89) induces
an equivalence at every geometric point v — V_; . Since Mo and Ny are compact, Aj and Aj ® By
are eventually connective and coconnective as cosimplicial objects, i.e., uniformly in the cosimplicial

degree. Since the homotopy limit of a cosimplicial object in complexes of Z/¢-modules can be computed
using the total complex of the associated double complex, this implies that

([}Li]I?A A(r)l)v = [}li]IgA(A(r)l)v and ([Li]IIElA(A(r)l ® B)), = [Li]nelA((Ag)v ® By).
Thus, the fiber of the morphism (89) at v can be identified with the map

([Li]nelA(A(r)l)v) ® (Bo)y — [Li]lgA((A(r)l)v ® (Bo)y)-
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That the latter is an equivalence follows from the fact that (By), is a perfect complex of Z/{-modules
(which is a consequence of the assumption that N is compact). O

The method used for proving Theorem 3.6.1 can be also used to prove the following result.

Proposition 3.6.8. We work under Assumption 3.3.1. Let 8 be a formal scheme, and set S = S"€. The
Sfunctor ys : RigSH(TA) (S;A) — FSHS,A)(S; ) preserves colimits.

Proof. This is clear under the alternatives (iii) and (iv) which imply that £s belongs to Prl by Proposi-
tions 2.4.22 and 3.2.3. Thus, it is enough to consider the alternatives (i) and (ii).

By Lemma 3.6.5, the functor ¢g . preserves colimits. Since ys = ts, . o ¥'s, it is enough to show that
the functor y'g preserves colimits. The latter is fully faithful with essential image the full-subcategory

of FS_H(TA) (8; A) spanned by those objects admitting rig-7-(hyper)descent. Thus, it is enough to show
that the property of admitting rig-7-(hyper)descent is preserved under colimits.

LetE : I — FS_H.(,A) (8; A) be a diagram with colimit E(co) and such that E(«@) admits rig-7-
(hyper)descent for every @ € I. We need to show that E(co) admits rig-7-(hyper)descent. As in the
proof of Proposition 3.6.7, we reduce to showing the following two properties:

(A) E (o) is local with respect to morphisms M(V) — M(U), where V — U is an admissible blowup;
(B) If 7 is the étale topology, then E (o) is local with respect to morphisms of the form

colimM(V,) —» M(V_)),
[n]eA

where V, is a hypercover for the topology rigfét, which we assume to be truncated in the nonhy-
percomplete case.

We split the rest of the proof into two parts.

Part 1

Here we prove property (A). We start by introducing some notations. We denote by f : U — 8 the
structural morphism and by ¢ : V — U the admissible blowup, and we set g = f o e. We need to show
that the obvious morphism

Mapm(f/\) (U A) (A5 f*E(OO)) - Mapmw (V;A) (A, g*E(OO))
is an equivalence. As in the first part of the proof of Proposition 3.6.7, it is enough to show that
ug, «fTE(0) = ey, g E(o0)

is an equivalence. Since the objects E(«) admit rig-7-(hyper)descent, for @ € I, we deduce that the
morphisms

a«fE(@) > ey g E(@)

are equivalences. Since the functors f*, g*, 1, « and ¢y, preserve colimits (see Lemma 3.6.5), it suffices
to show that the functor e. : FSHE,A) (V;A) - FSH(TA) (U; A) preserves colimits. By Theorem 3.1.10, it
is equivalent to show that the functor e . : SH(TA) Vo3 A) — SH(TA) (Uy; A) preserves colimits. This
follows from the fact that e is projective which implies that e . =~ e, admits a right adjoint e!U; see
[AyoO7a, Théoreme 1.7.17].

Part 2

Here we prove property (B). In particular, we work under the alternative (ii) and assume that 7 is the
étale topology.
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Forn > —1, we denote by g,, : V,, = Sand e, : V,, — V_; the obvious morphisms. As in the second
part of the proof of Proposition 3.6.7, we need to show that

Ly_,, *gilE(oo) - [}:]HEIA €n,xlv,, *g:LE(OO)

is an equivalence. Since the objects E (@) admit rigét-(hyper)descent, for @ € I, we deduce that the
morphisms

v, 8 E(a) = [E]IBA en, «v, «ShE(a)

are equivalences. Forn > —1, the functors g},, vy, « and e,,, . commute with colimits. (For the second one,
we use Lemma 3.6.5, and, for the third one, we use that e, - is finite which implies that e, o« = €5, &, 1
admits a right adjoint eil’ o see [Ayo07a, Théoréme 1.7.17].) Therefore, it is enough to show that the
obvious morphism

colim lim e, .ty, .g,E(@) = lim colime, .tv, .g,E (@) (90)
a€l [n]eA [n]eA acl )

is an equivalence. Now, as explained in the third part of the proof of Proposition 3.6.7, we may assume
from the beginning that V, is of the form (88). In this case, the morphism (90) can be rewritten as follows:
colim (e, «Lv,, *gSE(a/))G — (colimeg Ly, *g(‘;E(a))G.
ael ael
That this is an equivalence follows from the fact that taking the ‘G-invariant subobject’ in a Q-linear
co-category is equivalent to taking the image of the projector |G|~! 3, 9€G 8- O
With Theorem 3.6.1 and Proposition 3.6.8 at hand, we can prove the first assertion in Theorem 3.3.3.

Proof of Theorem 3.3.3(1). We need to show that the unit map id — ys o ES is an equivalence. Clearly,
ES preserves colimits and the same is true for y's by Proposition 3.6.8 combined with [Lurl7, Corollary
3.4.4.6(2)]. It is thus enough to show that M — }S%M is an equivalence for M varying in a set of
objects generating FSH(TA) (8; xA) under colimits. Thus, we may assume that M is a free ysA-module,
i.e., that M ~ yg(A) ® N for some N € FSH(TA) (8; A). In this case, the unit map coincides with the
obvious map ys(A) ® N — ysés(N) which is an equivalence by Theorem 3.6.1. O

3.7. Proof of the main result, I1. Sheafification

Our goal in this subsection is to prove the second part of Theorem 3.3.3. Using [Lur(09, Corollaries
3.2.2.5 & 3.2.3.2], this is equivalent to proving the following statement.

Theorem 3.7.1. We work under Assumption 3.3.2. The morphism of Pr™-valued presheaves

£ :FSH{" (= xA) — RigSH\"” ((-)"&; A)

t

exhibits RigSHétA ) ((—)"8; A) as the rig-étale sheaf associated to FSHétA) (= ).

Remark 3.7.2. In the hypercomplete case, Theorem 3.7.1, combined with Theorem 2.3.4, shows that
the étale sheafification of FSH, (—; yA) is already an étale hypersheaf.

Remark 3.7.3. Let S be a formal scheme.

(1) Recall that a sieve H C 8 is a sub-presheaf of 8 considered as a presheaf on FSch. A formal H-
scheme is a formal 8-scheme such that the structural morphism T — § factors through H. We say
that H is generated by a family (8; — 8); if H is equal to the union of the images of the morphisms
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8; — 8 considered as morphisms of presheaves on FSch. Equivalently, H is the smallest sieve of &
such that the §;’s are formal H-schemes.

(2) We say that a sieve H C § is a rig-étale sieve if the inclusion H C 8§ becomes an isomorphism after
rig-étale sheafification. Equivalently, H contains the sieve generated by a rig-étale cover of 8. (Of
course, this also makes sense for any other topology.)

We will need the following definition.
Definition 3.7.4. Let 8 be a formal scheme.

(1) A formal 8-scheme U is said to be nearly smooth (resp., étale) if, locally on U, it is of finite type and
there exists a finite morphism U’ — U from a smooth (resp., étale) formal S-scheme U’ inducing
an isomorphism U™ ~ U2 on generic fibers.

(2) Let H C 8 be a sieve. A formal 8-scheme U is said to be H-potentially nearly smooth (resp., étale)
if U xg T is nearly smooth (resp., étale) over T for every formal H-scheme T. If H is generated by a
family (8; — 8);, it is enough to ask that U Xg §; is nearly smooth (resp., étale) over 8; for every i.

(3) A formal 8-scheme U is said to be potentially nearly smooth (resp., étale) if it is H-potentially nearly
smooth (resp., étale) for some rig-étale sieve H C 8.

As usual, we say that a morphism of formal schemes T — 8§ is (H-potentially, potentially) nearly smooth
if the formal 8-scheme 7 is so.

Remark 3.7.5. It follows immediately from the definition that the class of nearly smooth (resp., étale)
morphisms is stable under base change and composition. Similarly, the class of potentially nearly smooth
(resp., étale) morphisms is stable under base change. It follows from Proposition 3.7.7 below that the
class of potentially nearly étale morphisms is also stable under composition if we restrict to quasi-
compact and quasi-separated formal schemes. However, this is not the case for the class of potentially
nearly smooth morphisms.

We gather a few properties concerning the notion of (potentially) nearly étale morphisms in the
following proposition.

Proposition 3.7.6.

(1) A nearly étale morphism of formal schemes is rig-étale.

(2) Let f : T — 8 be a potentially nearly étale morphism of formal schemes. Then, there exists a
rig-étale cover g : T’ — T such that f o g is rig-étale.”

(3) A quasi-compact and quasi-separated rig-étale morphism of formal schemes is potentially nearly
étale.

Proof. Assertion (1) is clear. Indeed, the notion of rig-étaleness is local for the rig topology (see
Definition 1.3.3(2)) and a finite morphism U” — U as in Definition 3.7.4(1) is a rig cover.

We now prove (2). By assumption, there is a rig-étale cover ¢ : 8’ — Ssuchthat f' : 7" = Txg 8’ —
8’ is nearly étale. By (1), we know that f’ is rig-étale. If follows that e o f" : T/ — § is also rig-étale.
Now, remark that g : 7’ — T, which is a base change of e, is a rig-étale cover. This proves the second
assertion.

It remains to prove (3). Let f : T — 8§ be a quasi-compact and quasi-separated rig-étale morphism.
Our goal is to show that f is potentially nearly étale. The problem is local on § for the rig-étale topology,
and since f is quasi-compact and quasi-separated, it is local for the Zariski topology on J. Thus, we may
assume that 8§ = Spf(A), with A an adic ring of principal ideal type, and T = Spf(B), with B a rig-étale
adic A-algebra such that the zero ideal of B is saturated. We fix a generator 7 € A of an ideal of definition.

We will show that every algebraic geometric rigid point s : Spf(V) — 8 admits a rig-étale neigh-
bourhood U such that T xg U, is nearly étale over Us. This suffices to conclude.

Fix s as above. Consider the rig-étale V-algebra W = V ®4 B/(0)*. Arguing as in the proof
of Proposition 1.4.19, we see that Spf(W) is the completion of a quasi-finite affine flat V-scheme,

It is plausible that f itself is rig-étale, but we didn’t strive to prove this since we do not need it.
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necessarily of finite presentation by [FK 18, Chapter 0, Corollary 9.2.8]. From Zariski’s main theorem
[Gro66, Chapitre IV, Théoreme 8.12.6], we deduce that Spf (W) is an open formal subscheme of Spf (W”),
where W' is a finite flat V-algebra. Moreover since V[77!] is an algebraically closed field it follows that
W’[7~!] is a finite direct product of copies of V[n~!]. Replacing 8 with a rig-étale neighbourhood of
s and T with an open covering, we may assume that W is the completion of a localisation of W’, i.e.,
there exists u € W’ which is invertible in W’ [n~!] and such that W is the completion of W’ [u~'].
Using that W’[x~!] is a direct product of copies of V[x~!], we may find a morphism of V-algebras

Vid/(t-a)---(t-an) > W,

inducing an isomorphism after inverting r, where the a;’s belong to V and such that two distinct a;’s
differ additively by an invertible element of V[7~!]. We may extend this morphism into a presentation

V<t,Sl,...,Sm>/((t_al)"'(t_ar),ﬂ'NSI _Plv"'77rNSm_Pm)Sat:W,7 (91)

where N € N is large enough and the P;’s are polynomials in V [¢]. The left-hand side of the isomorphism
(91) gives a presentation of the rig-étale V-algebra W’ as in Definition 1.3.3. Using Proposition 1.3.8
and Lemma 1.4.26, we may assume that the a;’s and the coefficients of the P;’s belong to the image of
the map

colim O(U) -V, (92)
Spf(V)-U—-8
where the colimit is over affine rig-étale neighbourhoods of s in 8. Similarly, we may assume that u € W’
is the image of a polynomial Q € Alz, 51, .. ., s,] with coefficients in the image of the map (92). Thus,
we may find a rig-étale neighbourhood Us = Spf(As) of s and lifts a;’s, ﬁj’s and Q to As of the a;’s,
P;’s and Q. We then set

Cs’:A5<I,S],...,Sm>/((t_2[1)"'(t_zir),ﬂ'NS] _ﬁla-"’ﬂNsm_ﬁm)Sat

and Cs=C.(v)/(v-Q-1).

Refining Us, we may assume that two a;’s differ by an invertible element of A;[7~!]. This insures that
C! is arig-étale As-algebra. By construction, we have an isomorphism

V®a, Cs/(0)™ =~ W = V@4 B/(0)™
Using Corollary 1.3.10, we may refine Us and assume that
Cs ~ As ®4 B/(0)™.

Therefore, to conclude, it is enough to see that Spf(C;) is nearly étale over Spf(As) for Us sufficiently
small. After refining U, if necessary, we may assume that the classes of the polynomials P;’s in the ring
As[t]/((t —ay) -+~ (t — a@y)), divided by 7, are algebraic over this ring. (Indeed, the P;’s satisfy the
analogous property.) In this case, the claim is clear since the normalisation of C; in C/[x~!] is then a
finite direct product of copies of the normalisation of A, in As[77']. O

Proposition 3.7.7. Let T — 8 be a quasi-compact and quasi-separated potentially nearly étale mor-
phism of formal schemes. Let V be a potentially nearly smooth formal T-scheme. Then V is also poten-
tially nearly smooth as a formal S-scheme.

Proof. The problem is local on 8 for the rig-étale topology. Thus, we may assume that 8§ and T are
quasi-compact and quasi-separated, and that the morphism J — § is nearly étale. The problem is also
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local on 7. Thus, we may assume that there is a finite morphism J; — 7 from an étale formal 8-scheme
71 inducing an isomorphism on generic fibers. It is clearly enough to show that the formal S-scheme
T1 X V is potentially nearly smooth over S. Thus, we may replace T with T} and V with T} X 'V,
and assume that T — § is étale. Let 7" — T be a rig-€tale cover such that V Xg T’ is nearly smooth
over 7'. By Lemma 3.7.8 below, there is a rig-étale cover 8 — § and and a morphism of formal T-
schemes T xg 8’ — T’. We claim that the formal 8’-scheme V Xg 8’ is nearly smooth. Indeed, we have
an isomorphism V xg 8’ = V Xg (T Xg 8’) and the formal T xg 8’-scheme V X (T xg 8’) is nearly
smooth since it is a base change of the formal T’-scheme V x4 T’. The structural morphism of the
formal 8’-scheme V xg &’ is thus the composition of two nearly smooth morphisms

VXT (‘IXS S’) — T Xg S — 8.
This finishes the proof since nearly smooth morphisms are preserved under composition. O

Lemma 3.7.8. Let T — 8 be a quasi-compact and quasi-separated étale morphism of formal schemes,
and let T' — T be a rig-étale cover. Then there exists a rig-étale cover 8’ — 8 and a morphism of
T-schemes T xg 8" — T’.

Proof. This is proven in the same manner as Corollary 1.4.30. Given an algebraic geometric rigid point
s — &, we consider t = s Xg 7. This is a quasi-compact and quasi-separated étale formal s-scheme.
Thus, t is a disjoint union of quasi-compact open formal subschemes of s. In particular, the morphism
t — 7 factors through T’. We then use Corollary 1.4.20 and Lemma 1.4.26 to conclude. O

Definition 3.7.9. Let S be a formal scheme.

(1) Let K C S be a sieve. A rig-étale sieve H C § is said to be K-potentially nearly étale if it can be
generated by a family (8; — §); consisting of rig-étale morphisms which are K-potentially nearly
étale.

(2) A rig-étale sieve H C 8 is said to be potentially nearly étale if it is K-potentially nearly étale for
some rig-étale sieve K C §.

Corollary 3.7.10. Let 8 be a quasi-compact and quasi-separated formal scheme. Let H C 8 be a rig-
étale sieve. Then, we may refine H by a rig-étale sieve which is potentially nearly étale.

Proof. After refinement, we may assume that H is generated by a rig-étale cover (8; — 8);¢s, where [
is finite and every §; is a quasi-compact and quasi-separated rig-étale formal S-scheme. By Proposition
3.7.6(3), each §; is K;-potentially nearly étale over 8 for some rig-étale sieve K; C 8. It follows that H
is K-potentially nearly étale, with K = N;K; which is a rig-étale sieve since / is finite. O

Notation 3.7.11.

(1) Given a presheaf of sets H on FSch, we denote by FSH;A ) (H; xA) the object of Pr™ obtained
by evaluating on H the right Kan extension of FSHétA )(—; xA) along the Yoneda embedding
FSch® — P(FSch)°P. We define similarly RigSH‘(é[A )(HTE; A).

(2) Let 8 be a formal scheme and H C § a rig-étale sieve. We denote by

En : FSHY (H; xA) — RigSH." (8"; A) (93)

the functor obtained by evaluating on H the right Kan extension of £ and then composing with the
equivalence RigSHétA) (H"g; A) ~ RigSHélA ) (8"¢; A) provided by Theorem 2.3.4.

Notation 3.7.12. Let S be a formal scheme and H C § a rig-étale sieve. We denote by

RigSH.}" (88 A) 17, C RigSH,” (8"; A)
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the full sub-co-category generated under colimits, desuspensions and negative Tate twists by motives of
the form M(U"¢), where U is a formal S-scheme which is H-potentially nearly smooth.

Proposition 3.7.13. We work under Assumption 3.3.2. Let 8§ be a quasi-compact and quasi-separated
Sformal scheme, and let H C 8 be a rig-étale sieve.

(1) The functor (93) is fully faithful and its essential image contains RigSHétA) (8", A) ().
(2) Assume that the sieve H is K-potentially nearly étale for a rig-étale sieve K C 8. Then the essential
image of the functor (93) is contained in RigSHélA) (8"8; A) k).

Proof. Up to equivalences, the functor E p is given by
Jim FSH( (T: xA) — lim RigSH (T A),

where the limit is over the category of formal H-schemes. Since limits in CAT,, preserve fully faithful
embeddings, Theorem 3.3.3(1), proved in Subsection 3.6, implies that the functor £y is fully faithful.
Moreover, an object M € RigSHg\ ) (8"¢; A) belongs to the essential image of E g if and only if, for
every e : T — 8 factoring through H, ¢"¢* M belongs to the essential image of &5. This shows the first
assertion. Indeed, if U is a formal 8-scheme which is H-potentially nearly smooth and ¢ : T — 8§ as
before, then e"& *M(U"8) ~ M((U xg T)"2) is a colimit of objects of the form M(V"8) ~ £+M(V),
where V is a smooth formal T-scheme admitting a finite morphism to an open formal subscheme of
U xg T which induces an isomorphism on generic fibers. (Recall that such V’s exist locally on the nearly
smooth formal T-scheme U Xg T.)

To prove the second assertion, we assume that H is generated by a rig-étale cover (§; — 8); such that
the formal 8-schemes §; are rig-étale and K-potentially nearly étale. We want to show that the essential
image of £ is contained in RigSHétA) (8"8; A) (k). Let M be in the essential image of En. LetT=1] i Si
and form the Cech nerve T,. Denote by ¢,, : T,, — 8 the obvious morphism. Then

colim e" ng Mo M
[n]eA "sﬁ

is an equivalence. (Indeed, by the projection formula, the simplicial object e“gﬁ Ve M s equivalent

to M(T2%) ® M and ‘J:;lg — 8" is a truncated étale hypercover of 8"8)) Smce e,:g M belongs to
the essential image of &7, , it is enough to show that the essential image of e o «fr; is contained in

RigSHétA ) (81ie; A) (k. This would follow if we can prove that for every smooth formal Tn-scheme 'V the
formal S-scheme V is K-potentially nearly smooth. This is a direct consequence of the definitions (and
also a special case of Proposition 3.7.7). O

Recall that Lyige denotes the rig-€tale sheafification functor. In particular, LrigétFSHétA ) (=; xA) is the
rig-étale sheaf associated to the Pr-valued presheaf FSHétA) (= xN).

Proposition 3.7.14. We work under Assumption 3.3.2. Let 8 be a quasi-compact and quasi-separated
formal scheme. Then the functor

LigeFSH{" (8; ¥ A) — RigSH" (8"%; A) (94)
is fully faithful with essential image the full sub-oo-category generated under colimits, desuspensions
and negative Tate twists by motives of the form M(U"®), where U is a formal 8-scheme which is

potentially nearly smooth. In fact, we can restrict to those U’s which are smooth over a quasi-compact
and quasi-separated rig-étale formal S-scheme.
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Proof. We split the proof into three steps.

Step 1

Let Lrligél be the endofunctor on presheaves over FSch described informally as follows. Given a formal
scheme 8§ and a presheaf F with values in an co-category admitting limits and colimits, we have

1 _ s T
Liga(9)(8) = colim T (H),

where F is the right Kan extension along the Yoneda embedding and the colimit is over the rig-
étale sieves H C 8. For a precise construction of such an endofunctor, we refer the reader to [Lur09,
Construction 6.2.2.9 & Remark 6.2.2.12].8 (In loc. cit., this is done for presheaves with values in S, but
the construction makes sense for more general presheaves.)

Let 8 be a quasi-compact and quasi-separated formal scheme. Let Sv(8) be the set of rig-étale sieves
of 8 ordered by containment, and let Sv’(8) be the subset of Sv(8) x Sv(8), endowed with the induced
order, consisting of those pairs (H, K) such that H is K-potentially nearly étale. We have two projections
Sv’(8) — Sv(8) which are cofinal by Corollary 3.7.10 and [Lur(09, Theorem 4.1.3.1]. By Proposition
3.7.13, every pair (H, K) € Sv’(8) gives rise to a sequence of fully faithful embeddings

RigSH./" (8"¢; A)(rr, — FSH\" (H; yA) — RigSH\"” (8"¢; A)(xy — FSH'" (K; xA),

in which we identified FSH‘;A ) (H; y\) with its essential image under 2 1, and similarly for K instead of
H. Passing to the colimit over Sv’(8) and using the cofinality of the two projections Sv’(8) — Sv(8),
we obtain an equivalence in Pr':

Ll FSHY (8 xA) = colim RigSH,,” (8" A) u.
Since the sub-co-categories RigSHE(,:tA> (8"¢; A)(uy are generated under colimits by a set of compact

generators of RigSHétA) (8"¢; A), it follows immediately that the induced functor
E4 1Ll FSHYY (8: xA) — RigSH." (878 A)

is fully faithful with essential image the full sub-co-category generated under colimits, desuspensions
and negative Tate twists by motives of the form M(U"¢), where U is a formal 8-scheme which is
potentially nearly smooth.
Step 2
Here we prove that Lrl etFSH(/\)( ; X\), restricted to FSch%®, is already a rig-étale sheaf. This will
prove the statement except for the last sentence.

We argue as in the proof of Proposition 3.7.13. Let H C § be a rig-étale sieve generated by a finite
family (S; — 8); such that the 8;’s are quasi-compact and rig-étale over S. We consider the functor

gll‘l rlgetFSH(/\) (H; XA) - ngSHétA) (Srig; A)

defined as in Notation 3.7.11(2). This is a fully faithful functor with essential image the sub-co-category
spanned by those M € RigSHétA) (8"g; A) such that e *M belongs to the essential image of g?(‘lr for
every e : T — 8 factoring through H. Our goal is to show that E sl and E ;1 have the same essential image.

Let T = []; 8; and form the Cech nerve T, associated to T — 8. Let e,, : T, — 8 be the obvious
morphism. Let M be in the essential image of £ }I We have an equivalence

colim e" ng M—> M.
[n]eA ’ﬂ

8This can be found in the electronic version of [Lur(09] on the author’s webpage, but not in the published version.
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rig rlg *
n, 4n

description of the essential image of !l p given above, it suffices to show that engﬁ takes the essential

image of E ! to the essential image of 5 sl This follows from the description of the essential images of ’g’ sl

Therefore, it is enough to show that e M belongs to the essential image of f g- Using the

and § T, glven above, and the fact that a potentially nearly smooth formal 7, -scheme is also potentially
nearly smooth as a formal $-scheme which follows from Propositions 3.7.6(3) and 3.7.7.

Step 3

It remains to show the last assertion in the statement, concerning the generators under colimits of
the essential image of the functor (94). Let € be the sub-co-category of RigSHétA ) (82; A) generated
under colimits, desuspension and negative Tate twists by M(V"2), with V smooth over a rig-étale formal
8-scheme. We want to show that € coincides with the essential image of the functor (94). By the previous
steps, it is enough to show that M(U'¢) € € for every potentially nearly smooth formal §-scheme U.
Let T — § be a rig-étale cover such that U xg T is nearly smooth over T. Let T, be the Cech nerve
associated to T — 8. Since

M(U"8) ~ colim M((U xg Ty,)"8),
[n]eA

it is enough to show that M((U xg T,,)"€) € @ for every n € N. The problem is local on U xg T,.
Since the latter is nearly smooth, we are reduced to show that M(V"€) € @ if V is a formal T,,-scheme
admitting a finite morphism V’ — V inducing an isomorphism V"¢ ~ V"¢ and such that V’ is smooth
over T,,. This is clear since M(V""¢) € € by construction. O

Corollary 3.7.15. Let (8, )q be a cofiltered inverse system of quasi-compact and quasi-separated formal
schemes with affine transition morphisms, and let § = lim,, 8 . Assume one of the following conditions.

(1) We work under the alternative (iii) of Assumption 3.3.1.
(2) We work under the alternative (iv) of Assumption 3.3.1. We assume furthermore that A is eventually
coconnective or that the numbers pved , (8,8) are bounded independently of .

Then, we have an equivalence in Pr":
colim Lyjoe FSHe (83 XA) = Liiga FSHe (85 X A).

Proof. This follows from Theorem 2.5.1, Proposition 3.7.14 and the following assertion. Given a rig-
étale formal S-scheme T and a smooth formal T-scheme V, we can find, locally for the rig topology
on J and V, an index ay, a rig-étale formal §,,-scheme T, a smooth formal T,,-scheme V,, and
isomorphisms of formal S-schemes

T/(0)* =~ lim To/(0)*™  and  V/(0)™ = lim V4 /(0)%.
aa asa

(As usual, for @ < ag, we set Ty = T, XS a0 8o and similarly for V,.) To prove this assertion, we may
assume that the 8, = Spf(A,)’s are affine, that T = Spf(B) with B adic rig-étale over A = colimy A,
and admitting a presentation as in Definition 1.3.3, and V = Spf(C) with C an adic B-algebra étale over
B(t1,...,ty). Then, the result follows easily from Corollary 1.3.10. O

Remark 3.7.16. Recall that our goal in this subsection is to prove Theorem 3.7.1. This is equivalent to
the statement that the morphism of rig-étale Pr™-valued sheaves

Ligai€ : Luige FSHY (= xA) — RigSHYY ((-)'¢; A) (95)

is an equivalence under Assumption 3.3.2. Clearly, it is enough to do so after restricting the morphism
(95) to affine formal schemes. Every affine formal scheme is the limit of a cofiltered inverse system
of (A, ét)-admissible affine formal schemes with (A, ét)-admissible generic fiber. Thus, when working
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under the alternative (iii) of Assumption 3.3.1, Theorem 2.5.1 and Corollary 3.7.15 allow us to restrict
the morphism (95) further to the subcategory of (A, ét)-admissible affine formal schemes with (A, ét)-
admissible generic fiber. By Propositions 2.4.19 and 3.2.2, we are then automatically working under
the alternative (iv) of Assumption 3.3.1. Said differently, to prove Theorem 3.7.1 we may work from
this point onwards under the alternative (iv) of Assumption 3.3.1. In particular, since we only consider
formal schemes with finite dimensional generic fibers, the morphism (95) is a morphism of rig-Nisnevich
hypersheaves. (See the proof of Lemma 2.4.18.) As a consequence, it is enough to show that the
morphism (95) induces equivalences on the stalks for the rig-Nisnevich topology. Using Theorem 2.8.6
and the analogous statement for LrigétFSHé:\ ) (=; x\) which follows in the same way from Corollary
3.7.15, we are left to show the following statement.

Proposition 3.7.17. Let s be a rigid point, and set s = Spf(k* (s)). Assume the following conditions:

(1) Every prime number is invertible either in k* (s) or in moA;
(2) When working in the nonhypercomplete case, A is eventually coconnective.

Then, RigSHétA) (s; A) is generated under colimits, desuspension and negative Tate twists by motives
of the form M(U"8) with U smooth over a rig-étale formal s-scheme (or, equivalently, by the motives
M (U) with U smooth with good reduction over an étale rigid analytic s-space).

Proof. This is a generalisation of [Ayo15, Theorem 2.5.34], and we will adapt the proof of loc. cit. to our
situation. Let C(s) be the sub-co-category of RigSHétA ) (53 A) generated under colimits, desuspension
and negative Tate twists by motives of the form M(U"€), with U smooth over a rig-étale formal s-
scheme. Note that C(s) is equally generated by motives of the form M(U), with U smooth with good
reduction over an étale rigid analytic s-space. Our goal is to show that C(s) is equal to RigSHét/\ ) (55 M).
We divide the proof into several steps.

Step 1
Here we show that it is enough to prove the proposition under the following assumptions:

o moA is a Q-algebra;
o «(s) is algebraically closed and «*(s) has finite height.

In particular, s is (A, ét)-admissible, and we will be working in the hypercomplete case.

Indeed, we can find a cofiltered inverse system of rigid points (54 ), With s ~ lim, s, such that the
valuation rings k* (s ) have finite ranks and the fields x(s) have finite virtual A-cohomological dimen-
sions. We set s, = Spf(«*(s4)) so that s = lim,, s,. Our goal is to prove that C(s) = RigSHétA) (55 A)
and, by Lemma 2.1.20, it is enough to show that M(V"¢) € C(s) for V a rig-smooth formal s-scheme.
Moreover, we may assume that V = Spf(A), where A is an adic «*(s)-algebra which is rig-étale over
k*(s){t1,- -, tm). Thus, using Corollary 1.3.10, there is an index @ and a rig-smooth formal s,-scheme
Vo such that V& = Vif x; 5. Since C(s) contains the image of C(s,) by the inverse image functor
along s — s,, we see that it is enough to show that M(V,f) € C(s,). Thus, we may replace s by s,
and assume that s is (A, ét)-admissible. In particular, by Proposition 2.4.19, the nonhypercomplete case
is then covered by the hypercomplete case. Also, the co-category RigSHéA[(s; A) is compactly generated
by Proposition 2.4.22.

Next, we explain how to reduce to the case where mgA is a Q-algebra. Let M € RigSHQt(s; A), and
consider the cofiber sequence M — Mg — Mo, where Mg = M ® Q is the rationalisation of M. The
motive My, is a direct coproduct of £-nilpotent motives M, for £ noninvertible in 7oA. By Theorem
2.10.3, we have an equivalence of co-categories

Shvy, (Et/s; A)e-nit = RigSHS (53 A)-ni-
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This implies that M, belongs to the sub-co-category of RigSHY (s;A) generated under colimits by
motives of the form M(U), where U is an étale rigid analytic s-space. This show that M, belongs to
C(s), and we are left to show that Mg belongs to C(s). To do so, we may replace A with Ag and assume
that moA is a Q-algebra.

It remains to explain how to reduce to the case where «(s) is algebraically closed. Let «*(5) be the
adic completion of a valuation ring extending «*(s) inside a separable closure of «(s), and let k() be
the fraction field of «*(5). This defines a geometric algebraic point s over s as in Construction 1.4.27(2).
We have 5 ~ lim, 5, where (5,), is the cofiltered inverse system of rigid points such that x(54)/«(s)
is a finite separable extension contained in «(s). Using Theorem 2.5.1 and arguing as above, we have
an equivalence in Pl :

C(s) = colim C(54). (96)

Denotebye :s — s,eq : 5§ = Sqgandr, : 5, — s the obvious morphisms. Consider a compact motive
M € RigSH (s; A), and assume that we know that e*M € C(5). Since e*M is compact, the equivalence
(96) implies that there exists g and a compact object N € C(5,) such that e*M = e, N. In particular,
the two compact objects r, M and N of RigSH/, (54,: A) become equivalent when pulled back to s.
By Theorem 2.5.1, they actually become equivalent when pulled back to 5,, for @ < g sufficiently
small. This shows that r}, M belongs to C(5,). We now conclude as in the second step of the proof of
Proposition 3.7.14: using the Cech nerve associated to 5, — s, we reduce to showing that, forn > 1,

n times n—1times
—_— ——

M®M(§a Xs++ Xs Ea) = (ra,ﬁr:;M)(@M(Ea Xs "'nga)’

belongs to C(s) which is clear.

Step 2

In the remainder of the proof, we work under the two assumptions introduced in the first step. We set
K = «(s),V = k*(s), and we fix 7 € V a generator of an ideal of definition. We set 7 = Spec(K) and use
a subscript ‘n’ to denote the fiber at n of a V-scheme. By Lemma 2.1.20, the co-category RigSH (s; A)
is generated under colimits by the motives M(Y), for Y € RigSm9°/s, and their desuspensions and
negative Tate twists. We will show that M(Y) € C(s) by induction on the relative dimension d of |Y|
over |s|. The case of relative dimension zero is clear because Y is then étale over s. In general, the
problem is local on Y. Thus, by Proposition 1.3.15, we may assume that Y is the w-adic completion P
of a V-scheme P of finite presentation and generically smooth. Replacing P with the Zariski closure of
P,;, we may also assume that P is flat over V.

Step 3

(This is analogous to the second step in the proof of [Ayo 15, Théoréme 2.5.34].) In this step, we will prove
the following preliminary assertion. Let E C P be a closed subscheme, generically of codimension > 1,
andlet Z = E"€ considered as a closed ri gid analytic subspace of Y. Then the relative motive M(Y /Y \.Z),
defined as the cofiber of M(Y \. Z) — M(Y), belongs to C(s). The proof of this uses the induction on
the relative dimension of |Y| over |s|, and we will argue by a second induction on the dimension of E,.
The base case for the second induction is when E,, is empty: The relative motive is then zero and the
claim is obvious. Let E” C E be the closure of the singularity locus of E;, and Z’ = E’€. Since k(s) is
algebraically closed and hence perfect, E7, has codimension > 1 in E,,. By the second induction, we may
assume that M(Y /Y \. Z’) belongs to C(s). We are thus left to show that M(Y . Z’/Y ~\ Z) belongs to
C(s). The rigid analytic space Y . Z’ is not necessarily quasi-compact, but we may write it as a filtered
union of quasi-compact opens Y, = (ﬁa)rig, where P, are open subschemes of admissible blowups of
P, not meeting the closure of E7,. Thus, we are left to show that M(Y, /Yo \ Z,) belongs to C(s) with
Z o the generic fiber of the formal completion of E, = E Xp P,. Replacing Y with Y, and E with E,,
we are thus reduced to showing that M(Y /Y \ Z) belongs C(s) under the assumption that E,, is smooth.
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As usual, we may also assume that P is affine and that E is flat over V. Now, assume we are given
a finite type morphism e : P — P and a closed subscheme E C P with the following properties:

o ey isétale, E C ¢! (E) and E, = €' (E);

o The induced morphism E > Eis proper and an isomorphism E, n = E;; on generic fibers.

Then, letting ¥ and Z be the generic fibers of the r-adic completions of P and E, we have, by étale
excision, an isomorphism M(f’/? < Z) =~ M(Y/Y \ Z). Using this principle twice, we may assume
that P is isomorphic to E X A€, for some ¢ > 1, and that E C P is the zero section. In this case, the
relative motive M(Y /Y \ Z) is isomorphic to M(Z)(c)[2c¢], and we may conclude using the induction
on the relative dimension of Y.

Step 4

(This is analogous to the third step in the proof of [Ayol5, Théoréme 2.5.34].) In this step, we show
that we may assume P to be ‘poly-stable’. By means of [Ber99, Lemma 9.2], applied to some compact-
ification of P, we may find a proper surjective morphism e : 0 — P with the following properties:

o There is a finite group G acting on the P-scheme Q, a dense open subscheme L C P, with inverse
image M = e~!(L) dense in Q,, and such that M — M /G is a finite étale Galois cover with group
G and M /G — L is a universal homeomorphism.

o The projection Q — Spec(V) factors as a composition of

0=042 0ui—... > 01 0y = Spec(V)

and, for every 1 <i < d, the morphism f; decomposes, étale locally on the source and the target, as
Spec(B) el Spec(Alu,v]/(uv —a)) — Spec(A), 97)

with A a flat V-algebra of finite type, u and v two indeterminates, and a € A invertible in A [Jr‘l].

In particular, we see that the f;’s have relative dimension 1 and that the ( f;),,’s are smooth.

Let E C P be the closure of P,, \ L in P and F' C Q the closure of Q,, \. M in Q. By the second step,
it is enough to prove that M(P"€ <. E"¢) belongs to C(s). By Lemma 3.7.18 below, M(P"€ < E"®) is
a direct summand of M(Q\rig < F rig), and it is enough to see that the latter is in C(s). Using the second
step again, we see that it is enough to show that M(Q"2) belongs to C(s). Thus, replacing P with Q and
Y with Q"¢, we may assume that the projection P — Spec(V') can be factored as a composition

P=Py2 Py .. = Py L5 Py = Spec(V) (98)

with f; given, étale locally on the source and the target by equation (97).

Step 5

We now conclude the proof. We argue by induction on the number of integers i € {1,...,d} such
that f; is not smooth. If all the f;’s are smooth, then the formal scheme P is smooth over Spf(V) and
M(Y) € C(s) by construction. Now suppose that at least one of the f;’s is not smooth. Arguing as in
[Ayol5, page 332],° we may assume that f; : Py — P4-; is not smooth. The problem is local for the
étale topology on Y. (More precisely, if Yo — Y is a truncated étale hypercover then it is enough to
prove that M(Y,,) € C(s) for n > 0.) Therefore, we may assume that a factorization as in equation (97)
exists globally for fy, i.e., that f; is a composition of

¢tal
P=Py =5 Py y[uv]/(uv —a) > Py

9We remind the reader that the page references to [Ayol5] correspond to the published version.
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for some a € O(P4-1) which is invertible in O((Pg-1),). Arguing by étale excision as in [Ayol5, page
333], we conclude that it suffices to treat the case where P = Py_1[u, v]/(uv — a).

We set R = P4_1. By the induction on the relative dimension of |Y| — |s|, we know that M(Erig) be-
longs to C(s). Consider the blowup e : W — R[u] of the ideal (a, u). Since a is invertible on R, e, is an
isomorphism and Wrig ~ Riig x B!. Moreover, W admits a Zariski cover givenby P = R[u,v]/(uv — a)
and P’ = R{u,w]/(aw — u) =~ R[w] intersecting at P’ = R[u,v,v~']/(uv — a) =~ R[v,v~']. Thus, we
have a cofiber sequence

M(R"e x U') - M(P"¢) @ M(R" x B') — M(R"2 x B'),
showing that M(Y) is isomorphic to M(R"&) & M(R"€)(1)[1]. This finishes the proof. o

Lemma 3.7.18. Let S be a rigid analytic space, f : Y — X a morphism of smooth rigid analytic
S-spaces and G a finite group acting on the rigid analytic X-space Y. Assume that Y — Y /G is a finite
étale cover and that Y/G — X is a universal homeomorphism. Assume also that the order of G is
invertible in mg/A and that every prime number is invertible either in O(X) or in ngA. Then, in the co-
category RigSHétA) (S; A), the morphism M(Y) — M(X) induced by f exhibits M(X) as the image of
the projector |G|~} 2geG & acting on M(Y).

Proof. Letry : X — S and ny : ¥ — § be the structural morphisms. Since M(X) = 7wy ynm3 A, there
is an equivalence of copresheaves

MapRigSHé[A) (S;A) (M(X)’ _) = MapRigSHé[/\) (S;:A) (A’ X, *ﬂ';( (_))’

and similarly for Y instead of X. Thus, by Yoneda’s lemma, it is enough to show that, for every
M e RigSHétA ) (S; A), the obvious morphism 7y .y M — nmy .y, M exhibits wx .7y M as the image
of the projector |G|~ 2igeG & acting on my .y M. Set X' = Y/G, and let nx: : X’ — § be the
structural morphism. By étale descent, the image of the projector |G|™! 3 geG g acting on my .7y M is
equivalent to 7x- .7y, M. Thus, we need to show that the natural transformation 7x .75 — 7x/ 7Y,
is an equivalence. This follows from the fact that the unit morphism id — e.e* is an equivalence, which
is a consequence of Theorem 2.9.7. O

Now that we have completed the proof of Theorem 3.7.1, we record the following generalisation of
Proposition 3.7.17.

Corollary 3.7.19. Let S be a rigid analytic space. Assume the following conditions:

(1) Every prime number is invertible either in every k*(s) for s € |S| or in moA;
(2) When working in the nonhypercomplete case, A is eventually coconnective.

Then RigSHeEtA) (S; A) is generated under colimits, desuspension and negative Tate twists by the motives
M(U) with U smooth with good reduction over an étale rigid analytic S-space.

Proof. The problem is local on S. Thus, we may assume that S = Spf(A)"¢ with A an adic ring. We
may write A as the colimit in the category of adic rings of a filtered direct system (A, ), such that the
8o = Spf(A,) and the S, = Spf(A,)"e are (A, ét)-admissible. Arguing as in the first step of the proof
of Proposition 3.7.17, we see that it is enough to prove the corollary for each S, . Said differently, we
may assume that S = Spf(A) and S are (A, ét)-admissible. By Theorem 3.7.1, we have an equivalence

LigeFSHY (8; xA) = RigSH." (S; A).

We may now conclude using Proposition 3.7.14. m}
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Corollary 3.7.20. Let S be a rigid analytic space, and assume the conditions (1) and (2) of Corollary
3.7.19. For every U € Et°® /S, denote by fy : U — S the structural morphism and choose a formal
model U of U. Then, the functors

xu o fy : RigSHYY (S;A) — FSH{Y (U; A),

for U € Bt /S, form a conservative family. In fact, the same is true if we restrict to those U’s admitting
affine formal models of principal ideal type.

Proof. This follows immediately from Proposition 3.1.14 and Corollary 3.7.19. O
We end the subsection with the following statement.

Theorem 3.7.21. We assume that T is the étale topology and work under one of the alternatives (ii),
(iii) and (iv) of Assumption 3.3.1. Let s be a geometric rigid point and set s = Spf(k*(s)). Then

& : FSH\Y (s; yA) — RigSH'" (5; A)
is an equivalence of oco-categories.

Proof. When working under (iii) or (iv), this is a direct consequence of Theorem 3.3.3(2) and the fact
that every rig-étale cover of s splits. In the generality considered in the statement, we argue as follows.
The functor & is fully faithful by Theorem 3.3.3(1). Since this functor preserves colimits, it remains to
see that its image generates RigSHétA ) (s; A) under colimits. This follows from Proposition 3.7.17 and
the fact that an étale rigid analytic s-space is a coproduct of open subspaces. O

3.8. Complement

Theorem 3.3.3 is especially useful if we have a handle on the commutative algebras ysA, for § € FSch.
Our goal in this subsection is to obtain a purely algebro-geometric description of these commutative
algebras, i.e., one that does not involve rigid analytic geometry. In order to do so, we need to assume
that 7 is the étale topology; the case of the Nisnevich topology seems to require techniques of resolution
of singularities which are stronger than what is available.

Given a formal scheme &, we will implicitly identify the oco-categories SHE,CE’ A (843 A) and
FSH(Teff’ A (8; A) by means of Theorem 3.1.10. In particular, ysA will be considered as a commu-
tative algebra in SH(TEE’ A (853 A). Our goal is to prove Theorem 3.8.1 below. The proof will occupy
most of the subsection, and it is inspired by the proof of [Ayol5, Théoreme 1.3.38].

Theorem 3.8.1. Let B be a scheme, B, C B a closed subscheme locally of finite presentation up to
nilimmersion and By, C B its open complement. Consider the functor

xs: SHYY (B, A) — SHYY (B3 A)
given by xyp = i* o j., wherei : B, — B and j : B;, — B are the obvious immersions. Assume that
every prime number is invertible either in moA or in O(B). Assume one of the following alternatives.

(1) We work in the nonhypercomplete case, and A is eventually coconnective;
(2) We work in the hypercomplete case, and B is (A, ét)-admissible.

Let B be the formal completion of B at B-. (Note that B, = B, up to nilimmersion.) Then, there is an
equivalence xgp\ = x g\ of commutative algebras in SHC(,tA) (Bo; N).

Remark 3.8.2. One has a good handle on the motive ypA in many situations. For example, if B is
regular and B is a principal regular divisor in B, then ypA =~ A @ A(-1)[-1]. This follows from
absolute purity; see Corollary 3.8.32 below. More generally, absolute purity can be used to give a precise
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description of ypA when B is a normal crossing divisor of a regular scheme B. In general, assuming
that B is quasi-excellent, one can access ypA using techniques of resolution of singularities to reduce
to the case where B is regular and B, is a normal crossing divisor. In fact, these techniques will also be
used in the proof of Theorem 3.8.1.

Remark 3.8.3. Let & be a field of characteristic zero having finite virtual A-cohomological dimension.
In the nonhypercomplete case, assume that A is eventually coconnective. Let K be the discretely valued
field k((x)) and R C K its valuation ring. For n € N*, we denote by K,, = K[7'/"] the finite extension
of K obtained by adjoining an n-th root of unity, and R,, C K,, its valuation ring. Also, we let K., be the
completion of |J,,enx Ky and Re C K its valuation ring. Using Theorem 3.8.1 (and Remark 3.8.2),
we obtain canonical equivalences of commutative algebras

XR,,A = dn, *A,

where g, : T,, — Spec(k) is the structural projection of the 1-dimensional torus 7,, ~ Gy, given by
Spec(k[x!/™, x71/"]). It follows formally that we have an equivalence of co-categories

SHY,” (k. xr,A) = uSH (T,;; ),

where uSHétA) (T,i; A) is the full sub-co-category of SH;:\) (T,,; A) generated under colimits by the image
of the functor ¢, Letting n go to co, we obtain an equivalence of co-categories

SH (k, xr.A) = uSH{" (Too; ), (99)

where T, is the pro-torus given by the spectrum of |, cyx k[7'/", 771/"] and uSHé[A) (Teo; A) is defined
similarly as for the 7,,’s. Now, assume furthermore that k is algebraically closed. Then the valued field
K is also algebraically closed. Combining the equivalence (99) with Theorem 3.7.21, we obtain an
equivalence of co-categories

uSH\" (Two; A) = RigSH" (Kuo; A). (100)

(S

Moreover, one can check that this equivalence is given by the composition of

uSH'" (Too; A) € SHYY (T A) — SHY (Keo; A) A, RigSH" (Kwo; A).

t

In fact, by Galois descent, one can show that the equivalence (100) is also true without assuming that k
is algebraically closed. We obtain in this way a weak version of [Ayo15, Scholie 1.3.26(1)] (for the étale
topology and after replacing K with K,). See also [Ayo15, Théoréme 2.5.75] for a similar statement for
motives with transfers.

Our first task is to construct a morphism of commutative algebras ypA — yzA which we will
eventually prove to be an equivalence. In order to do so, we need a digression on the notion of rigid
analytic schemes, generalising [Ayol5, Définition 1.4.1].

Definition 3.8.4. A rigid analytic scheme S is a triple (S, S, ts) consisting of a rigid analytic space
Sy, called the generic fiber of S, a formal scheme §, called the completion of S, and an open immersion
Ls : SE S, (We think of S as obtained from S,, and s by gluing along st .) Given a rigid analytic
scheme S, we set S, = S, o and call it the special fiber of S. A morphism of rigid analytic schemes
f T — S is a pair of morphisms ( fy,, ), where f;, : T,, — S,, is a morphism of rigid analytic spaces
and f: T > Sisa morphism of formal schemes and such that ¢ o ﬁ, = fy o tr. The morphism f is
said to be étale (resp., smooth) if both f;, and fare étale (resp., smooth).
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Notation 3.8.5. We denote by RigSch the category of rigid analytic schemes. Given a rigid analytic
scheme S, we denote by RigSch/S the overcategory of rigid analytic S-schemes and Et/S (resp.,
RigSm/S) its full subcategory consisting of étale (resp., smooth) objects.

Remark 3.8.6.

(1) We have a fully faithful embedding RigSpc — RigSch sending a rigid analytic space S to the triple
(S,0,0 — S). We will identify RigSpc with its essential image in RigSch.

(2) We have a fully faithful embedding FSch — RigSch sending a formal scheme § to the triple
(81, 8, idgrie ). We will identify FSpc with its essential image in RigSch.

Remark 3.8.7. A morphism j of rigid analytic schemes is said to be a closed (resp., an open) immersion
if both j; and JA are closed (resp., open) immersions. Given a closed immersion Z — S of rigid
analytic schemes, the complement S ~\ Z is defined to be the rigid analytic scheme given by the triple
(Sy N Zy;,8 N\ Z,15.z), where 15z is obtained by restriction and corestriction from ¢g. We have an
obvious open immersion S \ Z — S.

We warn the reader about the following notation clash: Given a closed immersion of formal schemes
Z — §, then ‘S \. Z’ can mean two different things. It can mean the open formal subscheme of §
supported on the open subset |S| \ |Z| of |§|. It can also mean the rigid analytic scheme obtained as the
complement of Z in 8 considered as rigid analytic schemes. Each time there is a risk of confusion, we
will specify if the complementation is taken in the category of formal schemes or the category of rigid
analytic schemes.

Next, we generalise Construction 1.1.15.
Construction 3.8.8. Let B be a scheme, B, C B a closed subscheme locally of finite presentation up
to nilimmersion and B,, C B its open complement. There exists an analytification functor

(=)™ : Sch''/B — RigSch/B (101)

which is uniquely determined by the following two properties.

(1) Itis compatible with gluing along open immersions. o
(2) For a separated finite type B-scheme X with an open immersion X — X into a proper B-scheme
and complement ¥ = X \ X, we have

XM = X Y), (102)

where, for a B-scheme W, W is the formal completion of W at W, = W Xp B
We stress that in equation (102) the complement is taken in the category of rigid analytic schemes.

Remark 3.8.9. Keep the notation of Construction 3.8.8. The functor (101) commutes with finite limits
and preserves étale and smooth morphisms, closed immersions and complementary open immersions,
as well as proper morphisms. For X € Sch'/B, we have a canonical isomorphism (X*),; = (X;)*, so
there is no ambiguity in writing ‘X7"’". The formal completions of X and X*" are canonically isomorphic,

i.e., X ~ X, and we have isomorphisms (X*"), =~ X, =~ (X5)* up to nilimmersions.

Definition 3.8.10. Let (f; : S; — §); be a family of étale morphisms of rigid analytic schemes. We
say that this family is an étale (resp., Nisnevich) cover if both families (f; , : S;,, — S;); and
(fi + S; = S); are étale (resp., Nisnevich) covers. The topology generated by étale (resp., Nisnevich)
covers is called the étale (resp., Nisnevich) topology and is denoted by ‘ét’ (resp., ‘nis’).

Notation 3.8.11. Let X be a rigid analytic scheme. We denote by BY the relative n-dimensional ball
given by the triple (B . A%, idgn X tx). Similarly, we denote by U} C B the relative unit circle given
by the triple (U} n’A;? N O, idyr X tx).
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Definition 3.8.12. Given arigid analytic scheme S, we define the monoidal co-category of rigid analytic
motives RigSH(Teff’ A (S; A)® from the smooth étale site (RigSm/S, 7) using the interval B; and the
motive of U}g pointed by the unit section, just as in Definitions 2.1.11 and 2.1.15.

Remark 3.8.13. Many of the results that we have established for co-categories of motives over rigid
analytic spaces hold true for co-categories of motives over rigid analytic schemes, and often the proof
we gave can be read in the context of rigid analytic schemes. This is the case for instance for Proposition
2.2.1. Moreover, Proposition 2.2.3 holds true for rigid analytic schemes, except that the proof of the
localisation property requires some extra arguments. These extra arguments can be found in the proof
of [Ayol5, Proposition 1.4.21]. Proposition 2.2.7 also extends: With the notation of Construction 3.8.8,
the contravariant functor

X RigSH{" (X" A), [ [
from Sch!/B to Pr" is a stable homotopical functor in the sense that it satisfies the co-categorical
versions of the properties (1)—(6) listed in [Ayo07a, §1.4.1].

Keep the notation as in Construction 3.8.8. Given a B-scheme X which is locally of finite type, the
analytification functor (101) induces a premorphism of sites

Any : (RigSm/X*",7) — (Sm/X, 7). (103)

By the functoriality of the construction of the co-categories of motives, the functor (103) induces a
functor

An’ : SHE™ Y (X; A) — RigSHE™ Y (X A). (104)

(This generalises the functor (20).) Given a morphism f : ¥ — X in Sch''/B, there is an equivalence
f*™*oAny =~ Anj o f*. In fact, the generalisation of Proposition 2.2.13 holds true: We have a morphism
of CAlg(Pr")-valued presheaves

SHE™ Y (= A)® — RigSHE™ "V ()™ A)® (105)
on Sch'/B. Also, note that if Z is a B--scheme which is locally of finite type, then An, is an equivalence
of co-categories.

Notation 3.8.14. Let B be a scheme, B, C B a closed subscheme locally of finite presentation and
B;, C B its open complement.

(1) Given a B-scheme X, we set X, = X Xp B, and X, = X Xp B,;, and we define the functor
xx : SHEY (X, A) — SHE™ Y (X1 A) (106)

as in the statement of Theorem 3.8.1. More precisely, we denote by i : X, — X and j : X;, —» X
the obvious inclusions, and set yx =i* o j,.
(2) Given arigid analytic B-scheme X, we define the functor

xx : RigSHE " (X,,: A) — SHE™ Y (X5 A) (107)

similarly. More precisely, we denote by i : X, — X and j : X;, — X the obvious inclusions, and
set yx =i 0 j..

Remark 3.8.15. In the T-stable case, the collection of functors {yx }x, for X € Sch/B, is part of a
specialisation system in the sense of [AyoO7b, Définition 3.1.1]. In fact, this specialisation system is
considered in [Ayo07b, Exemple 3.1.4] where it is called the canonical specialisation system. Similarly,
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the collection of functors { yxa o An}u }x, for X € Sch/B, is part of a specialisation system; see [Ayo15,
Proposition 1.4.41]. There are natural transformations

PX 1 XX = Xxw o Any (108)
given by the composition of
— ok . ~ * .k . ~ -an, * * . -an, *x -an * ~ an *
Xx =0 0jy,~Any oi oj, =i o Any o j, — i o OAnx,,—XX OAnX,,’
which are part of a morphism of specialisation systems; see [Ayo15, Lemme 1.4.42].

Remark 3.8.16. The natural transformation pyx is independent of B in the following way. Let B’ €

)

Sch!™/B and X € Sch'/B’. Then we have two natural transformations ‘yx — jyxm= © Anx,, , one
associated with X considered as a B-scheme and one associated with X considered as a B’-scheme.
We claim that these two natural transformations are equivalent. To explain how, we write momentarily
X(X/B)s An;n /B> CLC., tO stress the dependency on the scheme B. There is a canonical isomorphism

(X/B)™ = (X/B)™ X (3 /pyn B’

and hence an open immersion of rigid analytic B-schemes ¢ : (X/B)*™ — (X/B)™ inducing an
isomorphism on special fibers. Moreover, we have natural equivalences

X(x/Byn = X(x/pyn ot and  Any g =00 Any .

Modulo these equivalences, the two natural transformations ‘yx — yxa o An’;(n’ give the same natural
. 3k
transformation yx — x(x/p/m © ¢;, © AnX” /B

Lemma 3.8.17. Let X be a rigid analytic B-scheme. The functor (107) is equivalent to the composition of

RigSHCE™ Y (X,: A) =5 ngSH<eff N (i o) 255 SHETN (X, 0 A),

where x ¢ is the functor introduced in Notation 3.1.12.

Proof. For the sake of clarity, we will momentarily write *x %" instead of ‘y ¢’ for the functor introduced
X

in Notation 3.1.12 and use ‘ y g’ to denote the functor introduced in Notation 3.8.14(2) with X considered

as a rigid analytic B-scheme via the fully faithful embedding FSch — RigSch.
We have an equivalence yx = yg o ¢y which follows from the fact that (tx). is the identification

)’(\(r =~ X . Thus, to prove the lemma, it is enough to show that the two functors
Xg» X RigSHET Y (X, 8) — SHE Y (X, A)

are equivalent. (Note that )’(\,7 = X"&; here we use ‘)?,{ because we want to think about X as a rigid
analytic scheme via the fully faithful embedding of Remark 3.8.6(2).) In order to do that, we remark
that the base change functor RigSm/X — Sm/X, factors as follows

RigSm/X —>FSm/X Oe, Sm/X,.

We deduce immediately from the construction of the co-categories of motives that the inverse image
functor i* : RigSH™ " (X; A) — SH(Teff’ M (X3 A) is the composition of

RigSH*™ " (X; A) S FSHE™ Y (. A) 25 SHE Y (x5 A),
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where o* is the equivalence of Theorem 3.1.10 and ( )* is the functor that takes the motive of a rigid
analytic X-scheme to the motive of its formal completion. The formal completlon functor ( ) is right

adjoint to the obvious inclusion inc : FSm/ X ngSch/X It follows that ( )* is right adjoint to the
functor

nc* : FSH™ M (X; A) — RigSH YV (X; A).

This means that we have an equivalence (—)* = inc.. In conclusion, we see that y g is equivalent to the
composition of

RigSH™ Y (X, A) 25 RigSHE™ Y (X A) 25 FSHE™ V(X A) 25 SHE™ Y (X5 A).
Since j* o inc” is clearly equivalent to the functor £ from Notation 3.1.12, the result follows. )
Corollary 3.8.18. The functor x5 obtained by taking X = B in Notation 3.8.14(2) coincides with the
functor x g obtained by taking 8 = B in Notation 3.1.12.

From Corollary 3.8.18, we see that Theorem 3.8.1 follows from the following statement.

Theorem 3.8.19. Let B be a scheme, B, C B a closed subscheme locally of finite presentation up to
nilimmersion and B,, C B its open complement. Assume that every prime number is invertible either in
o\ or in O(B). Assume one of the following alternatives.

(1) We work in the nonhypercomplete case, and A is eventually coconnective;
(2) We work in the hypercomplete case, and B is (A, ét)-admissible.

Then, for every X € Sch!™/B, the natural transformation px : xYx — Xxm © An’;(’], between functors
from SH( )(X,], A) to SH<A) (X3 N), is an equivalence.
We start by proving a reduction.

Lemma 3.8.20. To prove Theorem 3.8.19, we may assume that A is eventually coconnective and that B is
essentially of finite type over Spec(Z). In particular, there is no need to distinguish the nonhypercomplete
and the hypercomplete cases.

Proof. We first explain how to reduce to the case where A is eventually coconnective. For this, we only
need to consider the alternative (2). It follows from Propositions 2.4.22 and 3.2.3 that px is a natural
transformation between colimit-preserving functors between compactly generated categories. Thus, it is
enough to prove that yxM — annAnX M is an equivalence for M € SH (X755 A) compact. Arguing
as in the second part of the proof of Lemma 3.6.2, we reduce to the followmg two cases:

o moA is a Q-algebra;
o M is {-nilpotent for a prime ¢ invertible on B.

In the first case, we may replace A by Q and assume that A is eventually coconnective as claimed. In
the second case, let My € Shv/ (Et/X,,; A), be the object corresponding to M by the equivalence

Shv (Bt/ X3 A)enit = SHL (X073 A)eanit

provided by Theorem 2.10.4. Using also Theorem 2.10.3, we reduce to showing that yxMy, —
Xxm Anﬁ(u M is an equivalence. (Here the functors yx, yx= and An}n are defined on étale hyper-
sheaves of A-modules by the same formulas as their motivic versions.) Using Lemma 2.4.5, one obtains
equivalences

xxMy = lirm/\{x (M() ®p T<r ) and XszAHX 0= llmannAnX (M() QA T<rA)
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(Indeed, as My is compact, the inverse system (Mo ®, T<,A), consists of eventually coconnective étale
sheaves and is eventually constant on homotopy sheaves.) This shows that we may replace M and A by
M ®p 7<,A and 7, A, and assume that A is eventually coconnective as claimed.

We now assume that A is eventually coconnective and explain how to reduce to the case where B is
essentially of finite type over Spec(Z). By Propositions 2.4.19 and 3.2.2, the alternative (2) is covered
by the alternative (1). By Remark 3.8.16, we only need to consider the case X = B. The problem is
local on B, so we may assume that B is affine given as a limit of a cofiltered inverse system (B, )q of
affine schemes which are essentially of finite type over Z. We may also assume that there are closed
subschemes B, » C B, such that, for every 8 < a, Bg . is the inverse image of B, o, and B is the
limit of the inverse system (B, o )a- Set Bo, ; = Bo \ Bq, o 50 that By, is the limit of the inverse system
(Ba,p)a-Letiy : Be, o — B and jo : By, ; — B, be the obvious immersions, and let f, : B — B,
and fg, : Bg — B, be the obvious morphisms.

We need to show that yg M — x5 Anﬁ(q M is an equivalence for all M € SHg(B,;; A). Since the three
functors yp, x5 and An;}” commute with colimits, we may assume that M is compact. By Proposition
2.5.11, we have an equivalence

SHg (B; A) =~ colim SHg (By; A)

in Pr and similarly for B, and B,,. Since M € SHg(B,;A) is assumed compact, we may find
an index ao, a compact object My, € SHg(Bq,, ;A) and an equivalence f(*m, ,IM(,0 ~ M. We set
My = f M. With this, we have an equivalence

aay, 17
J«M =colim f,jo «Mg.
a<ay

(It is not totally obvious how to construct such an equivalence. One needs to argue as in the proof of
Lemma 3.5.7; see also Remark 3.5.8.) Applying i*, we deduce an equivalence

xBM = colim f)xp Mg. (109)
a<a

Similarly, by Remark 3.5.8 and using Corollary 3.8.18, we have an equivalence

X5 An*B,] M =~ C(f)gh(gl fan. *XE(XAn*BO’v ) M,. (110)

Therefore, it is enough to show that yp, Mo, — x5 An};a ) M, is an equivalence. In particular, we may
assume that B is quasi-excellent and (A, ét)-admissible. In this case, since A is eventually coconnective,
we are automatically working in the hypercomplete case by Propositions 2.4.19 and 3.2.2. This finishes
the proof. O

Our next task is to prove the following weak version of Theorem 3.8.19 (which we are able to justify
even when 7 is the Nisnevich topology).

Proposition 3.8.21. Let B be a quasi-excellent (A, T)-admissible scheme, B, C B a closed subscheme
and B, C B its open complement. If T is the étale topology, assume that every prime number is invertible
either in moA or in O(B). Then, there is a natural transformation y g o An’;}” — xB, between functors

from SHY(B,,; A) to SHY (B3 A), which is a section to the natural transformation pg, i.e., such that
the composition of
* PB *
X5 © AnB" — XB — Xg©° Aan

is the identity.
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To prove Proposition 3.8.21 we need a digression. (Compare with [Ayol5, page 112].19)

Construction 3.8.22. Let 8 be a formal scheme. We denote by FRigSm,;/8 the full subcategory of
FSch/§ spanned by rig-smooth formal 8-schemes which are affine. Consider the functor

Ds : FRigSm,/S — Sch (111)

sending an affine formal scheme Spf(A) over 8 to the scheme Spec(A). Consider also the two related
functors Dg, » and Dg, ,, between the same categories, sending an affine formal scheme Spf(A) over
8 to the schemes Spf(A). and Spec(A) ~\ Spf(A),, respectively. We consider Dg, Ds, - and Dg_ , as
diagrams of schemes and define the smooth 7-sites

(Sm/DS’ T), (Sm/:DS, o> T) and (Sm/DS, 7 T)

asin [Ayo07b, §4.5.1]. To fix the notation, let us recall that an object of Sm/®g is a pair (U, V) consisting
of an object U € FRigSm,;/8 and a smooth O(U)-scheme V. The topology 7 on Sm/Ds is generated by
families of the form ((idy, e;) : (U, V;) — (U, V));, where the family (e;); is a cover for the topology 7.

The oco-category SH(Teﬁ’ A)(ZDS;A) is constructed from the site (Sm/Dsg, 7), using the interval A!
and the motive of A! \. 0 pointed by the unit section, as in Definitions 2.1.11 and 2.1.15 (or Definition
3.1.1 and 3.1.3), and similarly for Dg_, and Ds_,,. (For a construction using the language of model
categories, see [Ayo07b, §4.5.2].) We note here that Al (resp., Al 0) is considered as a presheaf of
sets on Sm/Dg, sending (U, V) to O(V) (resp., O*(V)). This presheaf is not representable unless § is
affine, but the Cartesian product with this presheaf preserves representable presheaves. (For instance,
we have A! x (U, V) = (U, A},).) We have morphisms of diagrams of schemes i : Dg, , — Dg and
i:®s,, — Ds, and we define the functor

xos : SHE M (D 5 A) — SHETY (D 3 A) (112)

to be the composite t* o {,.
Similarly, consider the functor

Dg' : FRigSm,;/8 — RigSch (113)

sending an affine formal scheme Spf(A) over § to Spf(A) considered as a rigid analytic scheme.
Consider also the related functor i)g“ . between the same categories, sending an affine formal scheme

Spf(A) over $ to the rigid analytic space Spf(A)"&. We consider D§" and DY , & diagrams of rigid
analytic schemes and define the smooth 7-sites (RigSm/®Dg", 7) and (RigSm/Dg" " 7) as in [Ayo07b,

§4.5.1]. The co-category RigSH(Teff’ ~) (Da"; A) is constructed from the site (RigSm/D2", 1), using the
interval B! and the motive of U' pointed by the unit section, as in Definitions 2.1.11 and 2.1.15, and
similarly for Dg" - We have morphisms of diagrams of rigid analytic schemes i*" : Dg , — Dg" and

i o g Dg", and we define the functor

xow : RigSHE™ "V (DF < A) — SHET (D 3 A) (114)
to be the composite i*™* o j2". The analytification functor induces functors
An*Ds : SH(Teﬁ’ A)(ES;A) — RigSH(Teﬁ’ A)(b"ﬂm;A) and

Any, SH™ Y (g, s A) — RigSHET V(DR - A).

10We remind the reader that the page references to [Ayo15] correspond to the published version.
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We may then define a natural transformation
PDs * XDs _)Xb‘;’s" OAH*QU (115)

as in Remark 3.8.15.
Remark 3.8.23. The functor (113) factors through the subcategory FSch c RigSch and defines a
diagram of formal schemes that we denote by ngO‘. As in Construction 3.8.22, we can define an

co-category FSH*™ A)(fbg‘“;A) of formal motives over D" using the smooth site (FSm/DE, 7).
Moreover, we have an equivalence of co-categories

o FSHE™ Y (D7 A) S SHI™ Y (Ds, 1 A)
as in Theorem 3.1.10.
Lemma 3.8.24. The functor X coincides with the composition of

X:Dfor ¥
RigSH{™ " (D : A) — FSHE™ Y (DF"; A) 5 SHE™ V(D5 3 A),

where Xl is the restriction along the functor (—)"¢ : FSm/Dg’r — RigSm/ ng"n sending a pair
(U, V) to (U, V1),
Proof. This is diagrammatic version of Lemma 3.8.17 which is proven in the same way. O

Remark 3.8.25. There are five diagonal functors emanating from FRigSm,/8 and taking values in
the categories Sm/Ds, Sm/Ds_, Sm/Ds 4, RigSm/’DfS'" and RigSm/’Dg‘j - These functors will be
denoted, respectively, by diag, diag,,, diag,,, diag" and diagj'. They send an affine formal scheme
U = Spf(A) over § to the pairs (U, Spec(A4)), (U, Uy ), (U, Spec(A) ~ Uy ), (U, U) and (U, U2),
respectively. We now concentrate on the case of diag, but what we are going to say can be adapted to
the remaining four diagonal functors. The functor diag induces an adjunction

diag” : PSh(FRigSm,:/8; A) 2 PSh(Sm/Dg; A) : diag,,

where diag, is the restriction functor. As in Remark 2.1.19, we denote by T (instead of Tg) the cofiber
of the split inclusion of A(8) — A(Acl8 ~ Os) (without 7-(hyper)sheafification) and similarly for Trp,.
(Here 8 and AIS \ Og are considered as presheaves of sets on FRigSm,;/$ which are not necessarily
representable.) Noting that diag, (Tpg ) ~ Ts, we may extend the above adjunction to T-spectra:

diag” : Spt; (PSh(FRigSm,;/8; A)) 2 Spt; (PSh(Sm/Ds; A)) : diag,.

Here, by abuse of notation, we write Spt; (PSh(—; A)) for the co-category associated to the simplicial
category Spty (PSha (—; A)) endowed with its levelwise global model structure; compare with Remark
2.1.19. We have the following equivalences

diag,, , ~ diag, oi. ~ diag{" o 1", diag, , ~diag, oj. and diag}', =~ diag{" o {i".

* an, *

Moreover, there are natural equivalences Ang o diag” =~ diag™ ,,

inducing natural transformations

and An;&,} o diag, =~ diag

diag, — diagi" o Ang_ and diag, , — diag]), o Ang_ . (116)

an
n,*

Lemma 3.8.26. Below, we consider diag,, , and diag,,’, as ordinary functors on ordinary categories

of presheaves of sets. Given a rigid analytic space W over 8"¢, we denote also by W the presheaf of sets
on FRigSm,;/8 given by W(X) = Homgug (X7, W).
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(1) Let (U, V) be an object of Sm/Ds  ,, which we identify with the presheaf of sets it represents. Denote
by V® the analytification of V with respect to the adic ring O(W). Then, there is a morphism of
presheaves of sets

diag, (U, V) - V*" 117

which induces an isomorphism after sheafification for the rig topology.
(2) Let (U, V) be an object of RigSm/Dg" " which we identify with the presheaf of sets it represents.
Then, there is a morphism of presheaves of sets

diag® ,(W, V) > V (118)

which induces an isomorphism after sheafification for the rig topology.

Proof. We only prove the first part, which is slightly more interesting. Set A = O(U), and let T = Spf(B)
be a rig-smooth affine formal S-scheme. A section of diag,, (U, V) on T is a pair (f, g) consisting of
a morphism of formal 8-schemes f : T — U and a morphism of schemes g : Spec(B) \. T, — V over
Spec(A) \ U, . This gives rise to a section of the (Spec(B) \ T )-scheme V Xgpec(a) Spec(B) and, by
analytification over T, to a morphism J"& — V& Xg.i, "8, This defines the morphism of presheaves
(117). It remains to see that this morphism induces an equivalence on stalks for the rig topology. To do
so, we evaluate the morphism (117) on arig point t = Spf(R) over 8, with R an adic valuation ring with
fraction field K. We may replace & with t and assume that V is a smooth K-scheme. The question being
local, we may assume that V is compactifiable over R and fix an open immersion V — V into a proper
R-scheme V. In this case, the evaluation of the morphism (117) on t is the obvious map between

(1) the set of K-points x : Spec(K) — V;

(2) the set of R-points ¥ : Spf(R) — V such that there exists an admissible blowup V’ — V with the
property that the lift x” : Spf(R) — V' of x factors through the complement of the special fiber of
the Zariski closure of V, \ V in V'. (See Construction 1.1.15.)

To give a morphism of formal R-schemes ¥ : Spf(R) — V is equivalent to giving a morphism of R-
schemes x : Spec(R) — V, and the condition in (2) corresponds to the condition that X sends Spec(K)
to V. Hence, the set described in (2) can be identified with

(2') the set of R-points X : Spec(R) — V sending Spec(K) to V.

That the obvious map between (1) and (2’) is a bijection is clear. (Note that the existence of this map
follows from the valuative criterion of properness, but once the existence of this map is granted, it is
clearly a bijection.) O

Recall that the weak equivalences of the stable (B!, 7)-local model structure are called the stable
(B!, 7)-local equivalences; see Remark 2.1.19. Similarly, we have the notions of stable (A', )-local
equivalences and stable (A, rig-7)-local equivalences. For later use, we record the following result.

Lemma 3.8.27.
(1) The functor

diag,, , : Spty (PSh(Sm/Ds, ;;; A)) — Spty (PSh(FRigSm,e/S; A))

takes a stable (A", T)-local equivalence to a stable (A', rig-t)-local equivalence.
(2) The functor

diagj;' , : Spty (PSh(RigSm/ng”’ 7I;A)) — Spty (PSh(FRigSm,¢/8; A))

takes a stable (B!, 1)-local equivalence to a stable (A, rig-1)-local equivalence.
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Proof. We only treat the first part; the second part is proven in the same way. The functor diag,, ,
commutes with colimits. Thus, by [Lur09, Proposition 5.5.4.20], it is enough to show that diag,, ,
transforms the following types of morphisms

(1) colimy,jea AU, V,) — A(U, V_1), where V, is a T-hypercover,
2) AW V) = AU, A,
(3) a morphism of T-spectra F — F’ such that F,, — F) is an equivalence for n large enough,

into (Al, rig-7)-local equivalences, for (1) and (2), and into stable (Al, rig-7)-local equivalences, for
(3). The case of (3) is obvious, so we only need to discuss morphisms of type (1) and (2).

In (1) and (2) above, U is an affine formal scheme which is rig-smooth over 8. We set U = Spec(O(U)),
Usr =Uys and Uy = U N\ Uy. Then V and the V,,’s, for n > —1, are smooth U;,-schemes. By Lemma
3.8.26(1), diag,,  takes morphisms of type (1) and (2) to morphisms which are rig-locally equivalent to

(1) colimp,jea A(V") — A(VE]),
(2) A(V™) — A((A})™),

where we use the notation introduced in aforementioned lemma. By Remark 2.1.14, it is enough to show
that (1”) and (2’) are (B!, 7)-equivalences in PSh(RigSm/8"¢; A) which is obvious. O

We now state the main technical result needed for proving Proposition 3.8.21. (Compare with [Ayol5,
Théoréme 1.3.37].)

Proposition 3.8.28. Let B be a quasi-excellent (A, T)-admissible scheme, B, C B a closed subscheme
locally of finite presentation and B, C B its open complement. If T is the étale topology, assume that
every prime number is invertible either in moA or in O(B).

(1) Consider the commutative diagram of diagrams of schemes

i i
D,V Dz,

Then, the composite functor
diag, ,oi"oj.ou, : SHZ(B,; A) — Spty (PSh(FRigSmaf/g; A)) (119)

takes values in RigSH/ (B2, A) considered as the full sub-co-category of the target of the functor
(119) spanned by those objects which are stably (A!, rig-7)-local.
(2) Consider the commutative diagram of diagrams of rigid analytic schemes

ia“ jan
L —— DU —— Dp
B, B » T

n
lu;‘;‘ luf‘“ lu(r
Erig 7 E i B
Then, the composite functor
diag® , o """ 0 {" o u¥™* : RigSH} (B"; A) — Spt; (PSh(FRigSm,;/B; A)) (120)
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takes values in RigSH? (Erig; A) considered as the full sub-co-category of the target of the functor
(120) spanned by those objects which are stably (A, rig-)-local. Moreover, the induced endofunc-
tor of RigSH’ (B"¢; A) is equivalent to the identity functor.

Proof. We start with part (2) which is easier. Let diag®™ : FRigSm,/ B — FSm/ TD;;’ be the diagonal

for
*

functor sending an affine formal scheme U to the pair (U, U), and let diag,™ be constructed as in
Remark 3.8.25. We have an equivalence diagff’r oo, ~ diag, ., where o, is restriction along the functor
(=)o : FSm/@flgr — Sm/Dz . By Lemma 3.8.24 and Theorem 3.1.10, the composite functor (120)

is equivalent to the composite functor

diag o yger o ul™* : RigSH, (B"¢; A) — Spty (PSh(FRigSm,/B; A)). (121)
B

Now, yqor is restriction along the functor (=)™ : FSm/ fbﬁi;‘ — RigSm/ fD%"ﬂg and uj, is restriction
B
along along the functor RigSm/ Z}gig — RigSm/B"¢ sending a pair (U, V) to V"€, It follows that the

composite functor (121) is restriction along the functor ()" : FRigSm,;/ B— RigSm/ B2 The claim
now follows from Remark 2.1.14.

We now concentrate on part (1). We fix an object M € SHZ(B,;; A). Our goal is to show that
diag,, ,i"j.u;,M belongs to the full sub-co-category

RigSH’ (B"2; A) c Spt; (PSh(FRigSm,;/B; A)). (122)

The proof of this is similar to the proof of Proposition 3.6.7, and instead of repeating large portions
of that proof, we will refer to it when possible. It follows from Propositions 2.4.22 and 3.2.3 that the
sub-oo-category (122) is closed under colimits and that the functors diag,, ., i", j. and uj, are colimit-
preserving. Thus, we may assume that M is compact. We split the proof into several steps.

Step 1

Arguing as in the second part of the proof of Lemma 3.6.2, we may assume one of the following
alternatives:

(1) 7 is the Nisnevich topology;
(2) moA is a Q-algebra;
(3) 7 is the étale topology and M is £-nilpotent for a prime ¢ invertible on B.

Moreover, we claim that under the alternative (3), we may assume that A is eventually coconnective. To
prove this, let Mo € Shvy, (Et/B,;; A)z-nit be the object corresponding to M by the equivalence

ShV:’;\t (Et/Bn; A)f—nil = SHQ{(BU; A)f—nil

provided by Theorem 2.10.4. Then, as a T-spectrum, M is given at level m by LZ” My(m)[m], where Lg”
is as in Notation 2.10.7. (See [Ayol4a, Corollary 4.9] in the case where A is an Eilenberg—Mac Lane
spectrum; the general case can be treated similarly.) Similarly, as a T-spectrum, i*j,u; M is given at
level m by L%é Ui*i*uf]Mo(m) [m]. Using this and Lemma 2.4.5, one deduces an equivalence

diag,, i"j.u,M = lifn diag,, ,i"j.u5, (M ®x 7<,A).

Since the sub-co-category (122) is stable under limits, we deduce that it is enough to prove the result for
M ®\ 1<, A. This proves our claim.

In conclusion, when 7 is the étale topology, we may assume that A is eventually coconnective.
(Indeed, if moA is a Q-algebra, there is a morphism Q — A and we may replace A by Q.)
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Step 2

From now on, we set £ = diag’;i*i*uﬁlM , and, for m € N, we denote by E,, the m-th level of the
T-spectrum E. In this step, we show that £ admits levelwise hyperdescent for the rig-Nisnevich topology.
Arguing as in the beginning of the proof of Proposition 3.6.7, we need to show that E,, has descent
for every rig-Nisnevich hypercover U, in FRigSm,;/ B admitting a morphism of augmented simplicial
formal schemes U, — U, such that:

o 1:1. is a Nisnevich hypercover;
o U-; — U_; is an admissible blowup;
o U, — U, is an isomorphism for n > 0.

In particular, we see that U, is affine except possibly whenn = —1.Forn > —1, wesetU,, = Spec(O(U,))
and, for n > 0, we set U, = Up. Since U_; — U_; is an admissible blowup, it is the formal completion
of a unique blowup e : U_; — U_; with center supported on U_;, , € U_;. For n > -1, we set

Un,o =Un, 0 Un, 0 =Un, s Un, 5y = Uy N Uy, o and 17,,,,7 = U, ~ Uy, & We denote by u,, : U, — B
and u,, : U,, — B the obvious morphisms.
Since M can be shifted and twisted, it suffices to prove that the map

Map(A(U1). Eo) — lim Map(A(Ly). Eo)
nje

is an equivalence, where the mapping spaces are taken in PSh(FRigSm,;/ B; A). Looking at the definition
of Ey, we see that this map is equivalent to

Mapsy: v, .0 (A XU U2y, M) — [E]TEA Mapsus v, : ) (A XU, Uy, M)

= i — (123)
- [lzl]r?AMapSHﬁ(ﬁn,a;A) (A’Xﬁnun, 7]M)~

Forn > 0, we let v,, : l7,, — l7_1 be the obvious morphism. Since B is quasi-excellent, the v,’s are
regular morphisms. By Lemma 3.8.29 below, the morphism

XU,LLTZ, 7]M - v:;, (TX[?ﬁl ﬁtl, 77M
is an equivalence. Therefore, the left-hand side in equation (123) is equivalent to

Jim Mapsi 7, ;) AV, o X Wo, yM)-

Since 17., o is a Nisnevich hypercover, the latter is equivalent to Mapgy 7, . A)(A, Xi_ U nM)’
Thus, we are left to show that the morphism '

* %k
XU_1U_q, 7]M - eU’»*Xﬁ_IM—I,nM

is an equivalence. This follows from the projective base change theorem and the fact that e, is an
isomorphism.

Step 3

In this step and the next one, we assume that 7 is the étale topology and we prove that E admits
levelwise hyperdescent for the rig-étale topology. By the second step, we already know that £ admits
levelwise hyperdescent for the rig-Nisnevich topology. Thus, arguing as in the beginning of the proof
of Proposition 3.6.7, it remains to show that E has levelwise descent for the topology rigfét.
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In this step, we deal with the case where moA is a Q-algebra. As explained in the third part of the
proof of Proposition 3.6.7, we only need to show that E has levelwise descent for a rigfét-hypercover of
the form

Vo X G X G ==V x G == Vp —— V1, (124)

where V_; is an affine rig-smooth formal B-scheme and Vy — V_j isa finiteri g-étale covering admitting
an action of a finite group G which is simply transitive on the geometric fibers of V¥ — V5. For
n € {-1,0}, we set V,, = Spec(O(Vp)), Vu, o = Vi, o and V. ;, = V, N\ V,,, . We also denote by
vy :Voy = B,vg: Vo = Band e : Vy — V_; the obvious morphisms. For later use, we note
that e,, : Vo, — V_1, is a finite étale cover admitting an action of G which is simply transitive on
geometric fibers.

Since M can be shifted and twisted, it suffices to prove that the map

Map(A(V_,), Eg) — Map(A(Vo), Eo)©

is an equivalence, where the mapping spaces are taken in PSh(FRigSm,/ B; A). Looking at the definition
of Ey, we see that this map is equivalent to

Mapgsg: (v, a0 (A xve, vi M) — Mapsy: vy, o2 a) (A XVoVo, qM)G~

Thus, it is enough to show that
% * G * G
XvaV_q, 77M - (eo',*XVOV()’ 'IM) = (XV_len,*V_l, ’IM)

is an equivalence. (The equivalence above follows from the proper base change theorem and the fact

that e is finite.) Taking the ‘G-invariant subobject’ in a Q-linear co-category is equivalent to taking the

image of the projector |G|~ 3, ¢eG &> and hence it commutes with the functor yv_,. Thus, it is enough

to show that v*, ”Mo — (ey, e
A .

SHZ (V_1, ;5 A).

Step 4

Here we complete the proof that E admits levelwise hyperdescent for the rig-étale topology. By the first
and the third steps, we may assume that M is {-nilpotent and that A is eventually coconnective. Let
My € Shvy;(Et/By;; A)e-nil be the object corresponding to M by the equivalence

*

aVii UMO)G is an equivalence, which follows from étale descent in

Shvé\t(Et/Bn; A)é’—ni] = SHQ{(BU; A)(’—nil

provided by Theorem 2.10.4. As in the third step, it suffices to show descent for the rigfét-hypercover
(124), and it is enough to prove that

XV vil, 7]M - (XV—I e’i» *Vil, I]M)G
is an equivalence. Using Theorem 2.10.4, we may as well prove that

XV Vil, UMO - (/\/V,l €n, *Vil’ UMO)G
is an equivalence. Since A is eventually coconnective and M is compact, we deduce that the étale sheaf
M, is also eventually coconnective. Taking the ‘G-invariant subobject’ commutes with direct images,
and if we restrict to eventually coconnective étale sheaves, it also commute with inverse images. (The
latter assertion can be proven using an explicit model for the G-invariant functor; see the fourth part
of the proof of Proposition 3.6.7 for a similar argument.) Thus, as in the previous step, it is enough
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to show that v*1 My — (ey, e}, _1 . M,)© is an equivalence, which follows from étale descent in

Shv (Et/V_1, U,A).
Step 5

In this last step, we check that E is levelwise Al-invariant and an Q-spectrum. Since M can be shifted,
it is enough to show that the maps

Map(A(W), E;n) — Map(A(Ay), Em).
. (125)
Map(A(W), E) — fib{Map(A(Al ~ 010). Eper) — Map(A(U), Epe1)}

are equivalences for every U € FRigSm,;/ B.

Set U = Spec(O(U)), Uy = Uy and U, = U\ U, Let V be an affine smooth formal U-scheme, and
set V = Spec(O(V)), Vo = Vs and V,;; =V N\ V. Denote by u : U — B and g : V — U the obvious
morphisms. Then we have equivalences

Map(A(U), En)

R

MapSHﬁ(UU;A) (A(_m),XUMj}M),

Map(A(V), Em)

R

Mapgy: (v, a) (A(=m), xv g5 un M),

) x x
MapSHﬁ(Vo—;A) (A(_m)’ go’XUunM)’

R

(2 % "
=~ Mapgy: (. p) (A(=m), 8o, <8 xUULRM).

The equivalence (1) follows from Lemma 3.8.29 below and the fact that g is regular. The equivalence (2)
follows by adjunction. Letting p : Al — Uy and g : AU ~\ Oy, — U, be the obvious projections,
we deduce that the maps (125) are equlvalent to the followmg ones:

Mapgy: (v, ; a) (A(=m), xuuy M) — Mapgy . a) (A(=m), p.p* xuuy M),
Mapguy (v, a) (A(=m), xuuy M) — Mapgp y,,.. o) (A(=m = 1), fib{1" : g.q" xuu;, M — xyu;, M})

which are clearly equivalences as needed. O

The following lemma was used in the proof of Proposition 3.8.28. We prove it in a greater generality
than needed because of its potential usefulness.

Lemma 3.8.29 (Regular base change). Consider a Cartesian square of schemes

’

y -5 .y
-
X 5 .x

with X locally noetherian, g regular, and f quasi-compact and quasi-separated. Assume one of the
following alternatives:

(1) We work in the nonhypercomplete case, and when T is the étale topology, we assume furthermore
that A is eventually coconnective;
(2) We work in the hypercomplete case, and the schemes X, X', Y and Y’ are (A, T)-admissible.

Then, the natural transformation g* o f, — f] o g’*, between functors from SH(TEH’ ~ (Y;A) to
SH(TCH’ ~) (X’; M), is an equivalence.
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Proof. This is a generalisation of [Ayol5, Corollary 1.A.4], and, as in loc. cit., its proof consists
in reducing to the smooth base change theorem using Popescu’s theorem on regular algebras and
Proposition 2.5.11. However, here we need an extra argument to reduce to the case where A is eventually
coconnective so that Proposition 2.5.11 applies. The problem being local on X, X’ and Y, we may assume
that X, X', Y and Y’ are affine. (This uses the hypothesis that f is quasi-compact and quasi-separated.)
By Proposition 3.2.3, the co-category SH(Teﬁ’ M (X; A) is compactly generated and similarly for X’, Y
and Y’. By the same proposition, the functors f, and f! are colimit-preserving, and thus belong to Prl.
(The same is obviously true for g* and g’*.)

We first prove the lemma under the alternative (1). By [Pop86, Theorem 1.8], the X-scheme X" is a
limit of a cofiltered inverse system (X/,), of smooth affine X-schemes. For each a, consider a Cartesian
square

By the smooth base change theorem, we have commutative squares in Pr™

SHCD (v7; A) 22— SHED (v; A)

Jfa’, . l £

SHC™ (x7; A) 22— SHD (X A).

Taking the colimit in Pr" of these squares yields a commutative square expressing that g* o f, is
equivalent to f; o g’* as needed. (This is actually not obvious; one needs to argue as in the proof of
Theorem 2.7.1. We leave the details to the reader.)

Next, we prove the lemma under the alternative (2). Using Proposition 3.2.2, we may conclude using
the lemma under the alternative (1) if 7 is the Nisnevich topology or if A is eventually coconnective
and, more generally, if A is an algebra over an eventually coconnective commutative ring spectrum.
In particular, we may assume that 7 is the étale topology, and the result holds if mypA is a Q-algebra.
Arguing as in the second part of the proof of Lemma 3.6.2, it remains to prove that g* .M — f/g"*M
is an equivalence when M € SHéfﬁ)’ A(Y 3 A\)¢-nit, for some prime ¢ invertible on X. Moreover, we may
assume that M is compact. By Theorem 2.10.4, it is enough to show that g*f.My — f/g’* My is an
equivalence for My € Shvgt(Et/ Y; A)¢nit. Using Lemma 2.4.5, one deduces equivalences

g fiMy =~ lirm 8" o (Mo ® 1<, ) and 18" My = lirm £.87 (Mo ®n T<r ).

Thus, we may replace M and A with M ®, 7<,A and 7, A. We are then automatically working under
the alternative (1), and the result follows. m]

Proof of Proposition 3.8.21. We have a commutative square of natural transformations

% a

diag,, , ouj diag, ,oi"oj.ouy (126)

b b

L p o . . .
diagy) , ou3;"" o Anp —— diag,, , 0 "™ " 0" ou

X
n © AnB”.
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The natural transformation « is obtained from j. — i, o i* o j, by applying diag, and similarly for the
natural transformation a’. The natural transformation 8 is deduced from the natural transformation (115)
(with 8§ = 1§). Finally, the natural transformation 8’ is deduced from the second natural transformation
in equation (116) (with 8 = B) and the equivalence up" o An’;gn ~ An*% ,° ;.

We claim that the natural transformation 3 o a is given by stable (A!, rig-7)-local equivalences. We
will prove this by showing that o’ is an equivalence and that 8’ is given by stable (A!, rig-7)-local
equivalences. We then use this to finish the proof of the proposition. We split the remainder of the proof
into three steps accordingly.

Step 1
Here we prove that @’ is an equivalence. In fact, even the natural transformation

diag), — diag,, , 01" o j{" = diag,, , o ypuw
: : E

is an equivalence. Indeed, by Lemma 3.8.24 and Theorem 3.1.10, we have an equivalence
diag, , o ypu ~ diag o Xopfor-
) 3 B

(See the beginning of the proof of Proposition 3.8.28.) Thus, we need to show that the natural transfor-
mation

diagy , — diag®" o X
is an equivalence. This follows from the equality diag;' = ()" o diag™ and the fact that ypr is
B

restriction along the functor (=)"€ : FSm/ CD%” — FSm/ 1)%“
.7

Step 2

Here we prove that 8’ is given by stable (A!, rig-7)-local equivalences. Since all the functors composing
the source and the target of 8’ are colimit-preserving and since stable (A!, rig-7)-local equivalences are
preserved by colimits, it is enough to show that

By diag, u;M — dlagn . *An"jgnM
is a stable (A',rig-t)-local equivalence when M is of the form Lyt ¢ ¢Susp A(X) for n € N and
X € Sm/B;;. (Here Ly .  is the stable (A, 7)-localisation functor and Sus’" is the left adjoint sending
a T-spectrum to its m-th level.) We have an equivalence
w, M =Ly o g1y, Susp A(X),

where, on the right-hand side, u;, : Spt; (PSh(Sm/B;;; A)) — Spty (PSh(Sm/Dj o ; \)) is the inverse
image functor on T-spectra of presheaves of A-modules. Using Lemma 3.8.27(1), we deduce a stable
(A, rig-7)-local equivalence

diag,, ,u;, »SusTA(X) — diag, ,u u, M.

Similarly, we have An} B, M =~ Lgi . (Susi’A(X®"). Arguing as before and using Lemma 3.8.27(2), we
deduce a stable (A!, rig- T) local equivalence

diagy 3" "Susp A(X™) — diag)) *Anan
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The result follows now by remarking that the obvious morphism

diag,, 1, SuspA(X) — diagj)’ ,u3" *Susy A(X™)

is an isomorphism.

Step 3

We are now ready to finish the proof of the proposition. By Proposition 3.8.28(1), the functor diag,, , o
i* o j. o uj, takes values in the co-subcategory spanned by stably (A, rig-7)-local objects. Therefore, o
factors through the functor L1 1, ;.  © diag,, , ou; and the composition of

an, an,

Ll rigr, o © diag, , ouy 5 diag,, ,oi"of.ouy LN diag,, , 0i"™" o f{" oui* o Angn

is given by stable (A, rig-7)-local equivalences (by the first and second steps). Since the source and the
target of this composition take values in the co-subcategory spanned by stably (A!, rig-7)-local objects
(by Proposition 3.8.28(2) for the target), this composition is in fact a natural equivalence. Thus, we have

shown that S admits a section. Applying the restriction functor
t, : Spt; (PSh(FRigSm,/B; A)) — Spt; (PSh(FSmy¢/B; A))

to B, we deduce a natural transformation

an, * an, *

t.(B) i t.odiag, ,oi"oj.ou; — v, odiag, ,oi"™ o ouiph*o Angn

admitting a section. We claim that this natural transformation is equivalent to pp : xp — x5 © An}}”.
We only explain how to identify r. o diag,, , o i" o j. o uj with yp; the identification of r, o diag, , o
i * 0 j2" o uj" " with y is similar and easier.

Denote by D%m the diagram of schemes obtained by restricting the functor Dy to the subcategory

FSmy/B C FRigSm,;/ B. Define fD%m and fD%m similarly and denote by
.o .1
3Sm sm sm ism o, sm sm
i 'bé‘,(r_)%z}‘ and i .CDE’U—>®§

the obvious inclusions. We also consider the diagonal functor diag?" : FSm/ B— Sm/ ZD%“‘ sending a
, O

formal scheme U to the pair (U, U, ). With these notations, we have an equivalence

sm, *

. sk s % qiaoSM sSmM, % :Sm
. odiag, ,oi" oj,ou, ~diag,  oi of, " ouy,

Now, remark that the diagram of schemes b%m takes values in regular B-schemes. By Lemma 3.8.29,
we deduce an equivalence

sm, * — sm, * o3 s o $Sm, ok SM sm, *
uO’ OXB—I,[U_ o1 OJ*—[ OI* Oun
We conclude by remarking that diag®™, o u®™ * is equivalent to the identity functor. O
Yy o, * o y

We are now almost ready to finish the proof of Theorem 3.8.19, but we still need two results which
are of independent interest. The following is a version of [Ayo(7a, Proposition 2.2.27(2)] with integral
coefficients.

Proposition 3.8.30. Let B be a (A, ét)-admissible scheme, B, C B a closed subscheme and B, C B its
open complement. Assume one of the following alternatives:

o B is quasi-compact and quasi-excellent of characteristic zero;
o B is of finite type over a quasi-compact and quasi-excellent scheme of dimension < 1.
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Assume that every prime number is invertible either in moA or in O(B). Then, the co-category
SHQ(B w3 I\) is compactly generated, up to desuspension and Tate twists, by motives of the form fy, ./,
where f : X — B is a proper morphism with X regular and such that X , is a normal crossing divisor.

Proof. By [Tem08, Theorem 1.1] and [dJ97, Theorem 5.13], given a finite type B-scheme X with X,
integral and dense in X, we may find a proper morphism ¢ : X’ — X such that:

(1) X’ isregular and X/ is a strict normal crossing divisor of X’;

(2) Xj, is integral and dense in X’, and X" — X is dominant and generically finite;

(3) There exists a finite group G acting on the X-scheme X’ and a dense open U C X,, with inverse
image U’ C X;, such that the morphism U” — U factors as a finite étale Galois cover U" — U’/G
with group G and a universal homeomorphism U’/G — U.

Now, let T (resp., 7’) be the smallest full sub-co-category of SH (B,;A) closed under colimits,
desuspension and Tate twists, and containing the motives of the form f;, .A, where f : X — B is
a proper morphism (resp., a proper morphism with X regular and X, a normal crossing divisor). By
[AyoO7a, Lemme 2.2.23], we have T = SHQ(B,I;A), and it is enough to show that 7 c J”. Said
differently, we need to show that f;, .A € T’ for any proper morphism f : X — B. We argue by
induction on the dimension of X,.

Given a dense open immersion j : U — X;;, we have an equivalence

([ NeT) & (fy i NET) 127

by the induction hypothesis and the localisation property. Thus, given a proper morphism e¢; : X; — X
such that 7! (U) is dense in X; , and e;'(U) = U, we may replace X with X;. Applying this to the
normalisation of X, we reduce to the case where X is integral and X, dense in X.

Now, lete : X’ — X, G, U and U’ be as in (1)—(3) above. Set f’ = foe,anddenoteby j : U — X,
and j' : U" — XJ, the obvious inclusions. Then f; ,A € T’ by definition and f, ,j/A € T’ by the
equivalence (127), for X’ instead of X, which is also valid under the induction hypothesis since X,’7 has
the same dimension as X,,. Moreover, by the equivalence (127), we only need to show that f;, .jiA € T".
Since T’ is closed under colimits, it is enough to show that

Jos A = colim £ i A,

where f; ., j/A is endowed with the G-action induced from the action of G on X'. Letu : U’ — U and
v : U’'/G — U be the obvious morphisms. Since e is proper, we have f; . j/A = f; .jiu.A. Since f; .
and j, commute with colimits, we have

coéim T s di A= f,l,*jg(coéim u.\).

Thus, we are left to show that A — colimg u.A is an equivalence. By étale descent, we have v, A ~
colimg u.A, and by Theorem 2.9.7 we have A ~ v, A. This finishes the proof. O

The following is a generalisation of [Ayol4a, Théoreme 7.4].

Proposition 3.8.31. Let S be a regular (A, ét)-admissible scheme, and assume that every prime number
is invertible either in oA or in O(S). Let

g —2 s

be a transversal square of closed immersions in the sense of [Ayo 14a, Définition 7.2]. Then, the morphism
s"t'A — t"'s*A is an equivalence in SHéAt(T’; A).
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Proof. More generally, given a A-module M € Mod,, we will prove that s”t'M — t"'s*M is an
equivalence. Since the functors s*, ¢', s”* and ¢’* are colimit-preserving, we may assume that M is
compact. When A is the Eilenberg—Mac Lane spectrum associated to an ordinary ring, this is [Ayol4a,
Théoreme 7.4]. It follows that the proposition is known if mgA is a Q-algebra or, said differently, if
we replace M by Mg = M ® Q. Thus, we are left to treat the case where M is £-nilpotent for a prime
¢ invertible on S. We may apply Theorem 2.10.4 and work with the co-categories of étale sheaves
Shvy, (Et/(=); A)¢ni instead of SHf (—; A). We have equivalences

I'M ~1limt'(M & 7<,A)  and "M =~ lim1" (M ®, 1<, A).

Since S is (A, ét)-admissible and M is compact, Lemma 2.4.5 implies that the inverse system (' (M ®x
T<rN))y in Shvé\t(Et/ T; A) is eventually constant on homotopy sheaves. It follows that

s"t'M = lim s”t' (M ® 1<, ).
r
Thus, it is enough to prove that the maps
$"1' (M ®p T<rA) — 1"'s* (M ®p T<, )

are equivalences. Said differently, we may assume that A is eventually coconnective. By an easy
induction, we reduce to the case where A is the Eilenberg—Mac Lane spectrum associated to Z/¢.
(See the proof of Lemma 3.6.2.) In this case, the result is proven in [Ayol4a, Proposition 7.8] as a
consequence of Gabber’s absolute purity [[LO 14, Exposé XVI, Théoréme 3.1.1]. O

Corollary 3.8.32. Let B be a (A, ét)-admissible scheme, B, C B a closed subscheme and B,, C B its
open complement. Below, we use Notation 3.8.14.

(1) Assume that B is regular and that By is a regular subscheme of codimension c defined as the
vanishing locus of a global regular sequence ay, . ..,a. € O(B). Then, we have equivalences

I'A=A(=c)[-2¢]  and  ygA=A& A(-c)[-2c +1]

in SH, (Bg; A).

(2) Assume that B is regular and that By is a strict normal crossing divisor. Let D C B, be an
irreducible component and D° the intersection of D with the regular locus of (B )req. Let u : D° —
D andv : D — B be the obvious inclusions. The morphism

vixBA — uuv ygA

is an equivalence in SH (D; A).

Proof. For the first assertion, we consider the commutative diagram with Cartesian squares

i .
B, B+ B,

. Jo i
AG N 0p —— AS +—— B,

where a is the section of A}, — B induced by the c-tuple (ay,...,ac) and i is the zero section.
By Proposition 3.8.31, we have equivalences i'A ~ a%igA and ypA = ajy yac A, which enable us to
conclude.
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We now pass to the second assertion. Since the problem is local over B, we may assume that (B s )red
is defined by an equation of the form a; - - -a. = 0, where ay, ..., a. is a regular sequence. Consider
the commutative diagram with Cartesian squares

J

B, ——B+'—B,
P e
U G ,
where E is defined by the equation ¢; - - -z, = 0, with (¢1,...,¢.) a system of coordinates on A°, and

U=Aj N E.Forl c {1,...,c} nonempty, we let D; C B, and H; C E be the closed subschemes
defined by the equations [];c; a; = 0 and [];¢; #; = O, respectively. We have transversal squares

D, —" B

L,

Hp —— AS,.

By Proposition 3.8.31, we deduce equivalences a}i}'A = i;A. Since i'A and i"'A can be built from

the i’IA’s and the i;’A’s using the same recipe, we deduce that the obvious map a*.i" A — i'A is an
equivalence. It follows that

agxns, N — xpA

is also an equivalence. We may assume that D = D ;. We set H = H; and define H® as in the statement.
We also let v/ : H — E and u’ : H° — H be the obvious inclusions. By [Ayo07b, Théoréme 3.3.11],
the obvious map

Vi xag A = wuv" xac A
is an equivalence. We have a commutative diagram
av” xupe A ————v¥ay ype A ———— v xpA
aiulu v xae A —— w v ay yae A —— uuvi xgA.

E A S %k

So, we are left to show that the morphism ajuiu”v" yac A — wu*vag xac A is an equivalence. For
this, we remark that u”v" yac A ~ A@ A(=1)[-1] in SH, (H°; A) and that this morphism is equivalent
to

aju,(A® A(-1)[-1]) = u. (A& A(-1)[-1]).

Thus, it remains to show that b*z”' A — z'A is an equivalence, withz : D~ D° — D,z’ : H\ H° —» H
and b : D ~. D° — H . H° the obvious morphisms. This is proven in the same way we proved above
that a* i A — i'A was an equivalence. m|

We are finally ready to conclude.

Proof of Theorem 3.8.19. By Lemma 3.8.20, we may assume that B is essentially of finite type over
Spec(Z) and work in the hypercomplete case. Since the source and target of px consist of colimit-
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preserving functors, it is enough to prove that yx M — yxan An;f,,M is an equivalence when M belongs
to set of compact generators of SHQ(X,]; A). By Proposition 3.8.30, we may assume that M = f, .A,
where f : Y — X is a proper morphism such that Y is regular and Y, is a normal crossing divisor. By
the proper base change theorem, we have equivalences

XXfU, *A ~ fo_’ >F/Yy/\ and annAIl;(” f77~ *A o~ fo_’ *XyanAn;,]A =~ fO‘, *Xyan/\.

Thus, replacing X with Y, we may assume that X is regular and X, a strict normal crossing divisor, and,
in this case, we only need to show that yx A — yx=A is an equivalence. By Proposition 3.8.21, this
morphism admits a section, and thus yx=A is the image of a projector p of yxA. We need to prove
that p is the identity, and it is enough to show this after restriction to each irreducible component of
X . Using Corollary 3.8.32(2), it is enough to do so after restricting to the regular locus of X.. Said
differently, we may assume that X is a regular divisor.

From now on, we assume that X is regular and that X is a regular divisor defined by the zero locus
of a € O(X). We denote by p the projector of yx provided by Proposition 3.8.21. Our goal is to show
that p acts on yx A =~ A & A(—1)[—1] by the identity, and it is enough to show that p is an equivalence.
First, note that we have a commutative square

A‘)X)(A

I

A*>Xx/\

since p is an algebra endomorphism of yxA. (Indeed, the section constructed in Proposition 3.8.21
respects the natural right-lax monoidal structures.) Thus, with respect to the decomposition yx A =~
A ® A(-1)[-1], p is given by a triangular matrix

(1
pP= O q .
We will show that ¢ is the identity of A(—1)[—1]. To do so, we consider the morphism A — A(1)[1] in

SH, (X,;; A) corresponding to a € O*(X,,), i.e., induced by the sectiona : X, — A;(U N Ox, . Applying
Xx and then p : yx — xx yields a commutative square

00
A®A(-1)[-1] l>A(1)[1] oA
1r 1r
(061) (00 (Oq)
A®A(-1)[-1] l) A(D)[1] & A.

This forces g to be the identity, as needed. O

4. The six-functor formalism for rigid analytic motives

In this section, we develop the six-functor formalism for rigid analytic motives, getting rid of the quasi-
projectivity assumption imposed in [Ayo15, §1.4]. The key step in doing so is to prove an extended proper
base change theorem for rigid analytic motives; see Theorem 4.1.4 below. An important particularity
in the rigid analytic setting is the existence of canonical compactifications (also known as Huber
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compactifications). We will not make use of these compactifications in defining the exceptional direct
image functors, but see Theorem 4.3.20 below.

4.1. Extended proper base change theorem

Our goal in this subsection is to prove a general extended proper base change theorem for rigid analytic
motives; see Theorem 4.1.4 below. This will be achieved by reducing to the usual proper base change
theorem for algebraic motives. A compatibility property for the functors ys, for § € FSch, and the
operations fy, for f smooth, plays a key role in this reduction; it is given in Theorem 4.1.3 below which
we deduce quite easily from Theorem 3.6.1 (which was a key step in proving Theorem 3.3.3). We start
by a well-known generalisation of some facts contained in [Ayo07a, Scholie 1.4.1].

Proposition 4.1.1. Consider a Cartesian square in FSch

’

Yy

Jf/ lf

45X
with f proper.

(1) The commutative square

FSHY (X: A) —— FSH (Y; A)
FSHY (07; A) —L— FSHY (5 A)

is right adjointable, i.e., the natural transformation g* o f, — f! o g’* is an equivalence.
(2) If g is smooth, the commutative square

FSHY (X A) —— FSHY (; A)

lgu lgg
FSHY (X: A) —— FSH (Y; A)

is right adjointable, i.e., the natural transformation gy o f, — f. o gé is an equivalence.

Proof. By Theorem 3.1.10, we reduce to showing the statement for a Cartesian square in Sch

’

y Sy
ol
, 8
X —X
with f proper. When f is projective, this is covered by [Ayo07a, Scholie 1.4.1]; see also [Ayol4a, Propo-
sition 3.5]. The passage from the projective to the proper case is a well-known procedure, that we revisit

here because we don’t know a reference in the generality we are considering. (Under noetherianness
assumptions, an argument can be found in the proof of [CD 19, Proposition 2.3.11(2)].)
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The question is local on X, so we may assume that X is quasi-compact and quasi-separated. Using a
covering of Y by finitely many affine open subschemes, assertion (1) (resp., assertion (2)) follows if we
can prove that the natural transformation

g ofiovy— flog"ovy  (esp.gyo flovy— fiogjovy)

is an equivalence for every open immersion v : V — Y with base change v/ : V' — Y’. Letting
"1 V' — V be the base change of g’, this natural transformation can be rewritten as follows:

g o (foovy) = (flovpog”  (esp..gyo (flovy) = (foovy)ogl).

By the refined version of Chow’s lemma given in [Con07, Corollary 2.6], we may find a blowup
e : Z — Y, with centre disjoint from V such that 4 = f o e is a projective morphism. Letw : V — Z
be the open immersion such thatv =eow.Set Z' =Z xy Y',andlete’ : Z' - Y', ' : Z’ — X’ and
w’ 1 V" — Z’ be the base change of e, i and w along g. Using [AyoO7a, Scholie 1.4.1], we have natural
equivalences vy =~ e, o wy and vtli ~ el o Wili' Thus, we may rewrite the above natural transformation as
follows:

g0 (hoowy) — (Wow)og™  (resp..gyo (h.ow]) = (h.owy)og)).

Thus, we may replace f and f’ by & and /', thereby reducing the general case to the case of a projective
morphism. o

Lemma 4.1.2. Let f : Y — X be a proper morphism of formal schemes. Then, the functor
£ FSHY (Y; A) — FSHYY (X; A)

is colimit-preserving and thus admits a right adjoint.

Proof. By Theorem 3.1.10, we reduce to showing the statement for a proper morphism of schemes
f Y — X. When f is projective, this follows from [Ayo(O7a, Théoréme 1.7.17]. In general, we may
assume that X is quasi-compact and quasi-separated and reduce to showing that f o vy is colimit-
preserving for every open immersion v : V — Y with V affine. Then, we use the refined version of
Chow’s lemma given in [Con07, Corollary 2.6], to find a blowup Y’ — Y with centre disjoint from
V and such that Y — X is projective. We conclude using the equivalence fi. o vy = f/ o vﬁ, where

f' Y — Xandv’' :V — Y’ are the obvious morphisms. O

Our main task in this subsection is to prove a variant of Proposition 4.1.1 for rigid analytic motives.
(A version of Proposition 4.1.1(a) holds true in the rigid analytic setting even without assuming that f
is proper but under some mild technical assumptions; see Theorem 2.7.1. We will explain below how
to remove these technical assumptions when f is assumed to be proper.) A key ingredient is provided
by the following theorem.

Theorem 4.1.3. We work under Assumption 3.3.1. Let f : T — 8 be a smooth morphism of formal
schemes. The commutative square

FSHY (T3 A) —2 RigSH'" (Tmie; A)
lfﬂ J/fﬁrig
FSHY (8; A) —2— RigSH'V (8"2; A)

is right adjointable, i.e., the induced natural transformation fy o x5 — xs © fﬁrlg is an equivalence.
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Proof. We split the proof into two steps. In the first one, we consider the case where f is an open
immersion and, in the second one, we treat the general case.

Step 1
Here we treat the case of an open immersion j : U — 8. For M € RigSH(TA) (82; A), we have a
commutative diagram

. (D) . ~ .1i
xs(M) ® jyA —— xs(M ® EgjyA) — xs(M ® J;g/\)

J C gy @
Jpi xsM ———— jyxu J7 M ——— x5, "M,

where all the arrows, except the labeled ones, are equivalences for obvious reasons. By Theorem 3.6.1,
the morphism (1) is also an equivalence, and hence the same is true for the morphism (2). Thus, the
natural transformation jy o yy@ — xs o jﬂ "% becomes an equivalence when applied to the functor ;& *.

Since the latter is essentially surjective, the result follows.

Step 2

Here we treat the general case. Clearly, the problem is local on 8. We claim that it is also local on 7.
Indeed, let (u; : T; — T); be an open covermg of T. The co-category ngSH(A) (TM&; A) is generated
under colimits by the images of the functors u t’! Clearly, the functors fy and f are colimit-preserving.
By Proposition 3.6.8, the same is true for )(‘:r and ys. Thus, it is enough to prove that the natural

transformations fy o yg o u" ﬁ — ysg o f“g ou lgﬁ are equivalences. Using the first step, this natural

transformation is equivalent to (f o u;)y o 7, — xs o (f o u,—);'g which brings us to prove the theorem
for the morphisms f o u;. This proves our claim.

The problem being local on T and 8, we may assume that there is a closed immersion i : T — Aj.
We may also assume that there is an €tale neighbourhood of T in A which is isomorphic to an étale
neighbourhood of the zero section T — ATl (where m is the codimension of the immersion 7). Thus,
letting p : Ay — 8 be the obvious projection, we have natural equivalences

pyoi.= fy(m)[2m]  and  pyEoil® = f¥(m)[2m].
Moreover, the following diagram is commutative

Py o0 Yo —— pyo xay 0 it —— xs Ong i

| }

fiy o x (m)[2m] Xs © fy % (m)[2m].

This shows that it suffices to treat the case of the projection p : Ay — 8.
Let j : Ag — Pg be an open immersion into the relative projective space of dimension n, and

let g : P — S be the obvious projection. The morphism py o Xan = Xs© pEg is equivalent to the
composition of

Gy 0 Jj © Xay = dy o Xey 0 jyt = Xs © qy" 0 iy,
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and the first morphism is an equivalence by the first step. Thus, we are left to treat the case of g : Py — 8.
By [Ayo07a, Théoréme 1.7.17] and Corollary 2.2.9, we have equivalences

d=q.oTh(Qg)  and  gj* = ¢* o Th(Qyre),
and the following square

q4 © xen — ¢« © Th(Qy) o xpn

J !

X8 © q;ig —— x5 0 4% 0 Th(Qgrie)
is commutative. This finishes the proof. O

Here is the main result of this subsection.

Theorem 4.1.4 (Extended proper base change). Consider a Cartesian square in RigSpc

v 5y

Lf’ lf

x—x
with f proper.

(1) The commutative square

RigSHY (X; A) — s RigSH" (¥: A)

.
RigSHYY (X”; A) =L RigSHY (Y; A)

is right adjointable, i.e., the natural transformation g* o f., — f. o g’* is an equivalence.
(2) If g is smooth, the commutative square

RigSHYY (X A) =L RigSHY (Y/; A)

Jgﬁ lg,;

RigSHY (x; A) —— FSHY (¥; A)

is right adjointable, i.e., the natural transformation gy o f,, — fi o glli is an equivalence.

Proof. The question is local on X and X’. Thus, we may assume that X and X’ are quasi-compact and
quasi-separated. We split the proof into three steps. The first two steps concern part (2): In the first step,
we show that it is enough to treat the case where g has good reduction, and in the second step, we prove
part (2) while working in the nonhypercomplete case and assuming that 7 is the Nisnevich topology.
Finally, in the third step, we use what we learned in the second step to prove the theorem in complete
generality.
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Step 1

Here we assume that part (2) is known when g has good reduction and we explain how to deduce it in
general. The problem being local on X’, we may assume that our Cartesian square is the composition
of two Cartesian squares

y —< sy, "y

AN

X —S X —2 X,

where e is étale and & is smooth with good reduction. (For instance, we may assume that 4 is the
projection of a relative ball.) By assumption, part (2) is known for the right square, so it remains to
prove it for the left square. Said differently, we may assume that g is étale. Using Lemma 4.1.5 below,
we reduce further to the case where g is finite €tale. In this case, there is a natural equivalence gy =~ g.
constructed as follows. Consider the Cartesian square

X xx X' —2 4 x7

X —% .x,

and the diagonal embedding A : X’ — X’ xx X’ which is a clopen immersion. Since g is locally
projective, we may use Proposition 2.2.12(2) which implies that the natural transformation

8 OPry,+ = 8x 9Pl ¢

is an equivalence. Applying this equivalence to the functor Ay ~ A,, we get the equivalence gy ~
g«. Similarly, we have an equivalence gé ~ g.. Moreover, modulo these equivalences, the natural
transformation gy o f,) — fi o gé coincides with the obvious equivalence g, o f, =~ f, o g.. This proves
the claimed reduction.

Step 2
We now prove part (2) of the statement under Assumption 3.3.1 so that we can use Theorem 4.1.3.
(More precisely, we will assume that all the formal models used below satisfy this assumption.) In the
third step, we explain how to get rid of this assumption.

The problem being local on X and X', we may also assume that f is the generic fiber of a proper
morphism f : Y — X in FSch and that g is the generic fiber of a smooth morphism g : X’ — X of formal
schemes (since g can be assumed to have good reduction, by the first step). We form a Cartesian square

=

y 5y

b

X — X
For every quasi-compact and quasi-separated smooth rigid analytic X-space L, with structural morphism
prL : L — X, choose a formal model £ which is a finite type formal X-scheme. By Proposition 3.1.15,

when L varies, the functors

xc o pi s RigSHYY (X; A) - FSHYY (L A)
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form a conservative family. Therefore, it is enough to show that the natural transformation
Xcoppoggofi > xcoppofiogy

is an equivalence for each py : L — X and £ as above. Letting fz, f, gz and g; be the base change
of the morphisms f, f’, g and g’ along p; : L — X, and using Proposition 2.2.1, we reduce to showing
that the natural transformation

Xcog8rLgofl . 2 XeofLaogy y

is an equivalence. Thus, replacing X with L and X with £, we may concentrate on the natural transfor-
mation

Xox o8y o fi = xx o fiogy

Using Theorem 4.1.3, we can rewrite this natural transformation as follows:
ggofioxy = fiogyoxy.

We now conclude using Proposition 4.1.1(2).

Step 3
In this step, we will prove the theorem in complete generality. By Theorem 2.7.1 and the second step,
the theorem is known for the co-categories RigSH,;(—; A), i.e., when 7 is the Nisnevich topology
and we work in the nonhypercomplete case. This will be our starting point. (Of course, by the second
step, the theorem is known more generally, e.g., when 7 is the Nisnevich topology and we work in the
hypercomplete case, but this will not be used below.)

For a rigid analytic space S, the functor Ls : RigSH,;.(S;A) — RigSH(TA) (S; A) is a localisation
functor with respect to the set Hg consisting of maps of the form colim(,jea M(T;,) — M(7_y),
and their desuspensions and negative Tate twists, where T, is a T-hypercover which is assumed to be
truncated in the nonhypercomplete case. We claim that the functor

f: : RigSH

(Y;A) — RigSH_,.(X; A)

nis nis

takes Hy -equivalences to Hx-equivalences, and that the same is true for f,. Assuming this claim, one
has equivalences Ly o f. =~ f. o Ly and similarly for f;. Since the functors Ly and Ly~ are essentially
surjective on objects, it suffices to prove that the natural transformations

g ofioLy > f/log™oLy and gﬂof*'oLy/ —)f*ogéoLy,

are equivalences. Thus, using our claim and the obvious analogous commutations for g*, g4, g”* and gt/t’
the above natural transformations are equivalent to

Lx og“ofi > Lx of/ og™ and LXOgﬁof*,_)LXOf*Ogé,

and the result follows.

It remains to prove our claim, and it is enough to consider the case of f (which is a general proper
morphism). Using a covering of Y by finitely many affine open subspaces, we see that it suffices to show
that f. o vy takes Hy -equivalences to Hx-equivalences for every open immersion v : V' — Y such that
V admits a locally closed immersion into a relative projective space P = P% over X. (For what we mean
by a locally closed immersion, see Definition 1.1.14. For the existence of a cover by open subspaces
with the required property, see the proof of Proposition 4.2.2(2) below.) Let U C P be an open subspace
containing V as a closed subset. Set Q =Y xx P, W =V xx U, W; =V Xx Pand W, =Y Xx U. Thus,
Q is a proper rigid analytic X-space, and W, W and W, are open subspaces of Q containing Y, via the

https://doi.org/10.1017/fms.2022.55 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.55

144 Joseph Ayoub et al.

diagonal embedding Y — Q, as a closed subset. We have a commutative diagram of immersions with
Cartesian squares

V—=V

NN
14 e

W——W,

\ Je‘\\ J

wi

W, —— 0.

Using Proposition 2.2.3(4), we obtain equivalences e; yot. ~ 1 . and e y ot. = 15 .. Applying this to
wi y and w, y, we obtain equivalences

Wi g O« ¥ Wyoli =Wy 0l .. (128)

Now, consider the commutative diagram with a Cartesian square

v aw M0

Nk

V——mY.
By the second step, we deduce equivalences of functors from RigSH,; (V; A) to RigSH,;, (Y; A):
Vﬁ =Vﬁ°6]i°h,* ZQ*OWl,ﬁotl,* 2Q*Owﬁot*-

Thus, it will be enough to show that the functor f. o g. o wy o t. takes Hy -equivalences to Hx-
equivalences. Next, consider the commutative diagram with Cartesian squares

v—uw, 250

bk

V——U——P.
By the second step, we we deduce equivalences of functors from RigSH, ;. (V; A) to RigSH,; (Y; A):
ugos,=ugoh oty ,~h,owyygoty.=h,owyot,.
Since p o h = f o g with p : P — X the structural projection of the relative projective space P, we are

left to show that p. o uy o 5. takes Hy -equivalences to Hx-equivalences. This is actually true for each

of the functors p., uy and s.. For the first one, we use the equivalence p. =~ py o Th! (L) provided
by Corollary 2.2.9. For the second one, this is clear, and for the third one, this follows from Lemma
2.2.4. |

The following lemma was used in the first step of the proof of Theorem 4.1.4.
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Lemma 4.1.5. Let f : T — S be an étale morphism of rigid analytic spaces. Then, locally on S and T,
we may find a commutative triangle

T 1

G

S,

where j is an open immersion and f’ is a finite étale morphism.

Proof. This is a well-known fact. In the generality we are considering here, it can be proven by adapting
the argument used in proving Proposition 3.7.6(3). More precisely, it is enough to show that a rig-étale
morphism of formal schemes f : T — § is locally, for the rig topology on 8 and T, the composition of an
open immersion and a finite rig-étale morphism. We argue locally around a rigid point s : Spf(V) — §
corresponding to s € |8"8|. As in the proof of Proposition 3.7.6(3), we may assume that the formal
scheme s xg T/(0)%" is the formal spectrum of the r-adic completion of an algebra of the form

Vit st,....sm)/ (R,aN sy = Pr,...,7asm — Pm)[07], (129)

where R € V[t] is a monic polynomial which is separable over V[n~!], and Q € V[t,s1,...,Sn]. (The
polynomial R is the analogue of the polynomial (t —ay) - - - (t —a,) in equation (91). Here, since V[7 ']
is not algebraically closed, our polynomial R will not split in general.) The remainder of the argument
is identical to the one used in the proof of Proposition 3.7.6(3). [

The following is a corollary of the proof of Theorem 4.1.4.
Corollary 4.1.6. Let f : Y — X be a proper morphism of rigid analytic spaces. Then, the functor

f. : RigSHY" (v; A) — RigSH™M (X; A)
is colimit-preserving and thus admits a right adjoint.
Proof. This is true for the functor

S+ RigSH_;(Y; A) — RigSH,; (X; A)

by Proposition 2.4.22(1). The result in general follows from the fact that this functor takes
Hy -equivalences to Hx-equivalences as shown in the third step of the proof of Theorem 4.1.4. O

We end this subsection by establishing the projection formula for direct images along proper
morphisms.

Proposition 4.1.7.

(1) Let f 'Y — X be a proper morphism of formal schemes. For M € FSH(TA)(DC;A) and N €
FSH(TA) (Y; A), the morphism

M® f.N — f.(f*M & N)

is an equivalence.
(2) Let f : Y — X be a proper morphism of rigid analytic spaces. For M € RigSH(TA) (X;A) and
N e RigSHS,A) (Y; A), the morphism

M® f.N — f.(f*M & N)

is an equivalence.
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Proof. We only prove the second part. The proof of the first part is similar: In the argument below, use
Proposition 4.1.1 and Lemma 4.1.2 instead of Theorem 4.1.4, and Corollary 4.1.6.

The functor f. is colimit-preserving by Corollary 4.1.6. Hence, it is enough to prove the result when
M varies in a set of generators under colimits for the co-category RigSH(TA) (X; A). Thus, we may assume
that M = gy A where g : X" — X is a smooth morphism. We form the Cartesian square

’

v Sy
I, b
, 8
X —X.
By Proposition 2.2.1(2), we have natural equivalences
M®(-)~ggog'(-) and  (f"M)®(-)=gzo8"(-).
Modulo these equivalences, the morphism of the statement is the composition of

AL

848" N — g4 f 8" N — f.gyg" N.
The result follows now from Theorem 4.1.4. O

Recall that an object in a monoidal co-category C® is strongly dualisable if it is so as an object of the
homotopy category of C endowed with the induced monoidal structure. The following is a well-known
consequence of the projection formula for proper direct images.

Corollary 4.1.8.

(1) Let f : ' — X be asmooth and proper morphism of formal schemes. Then fy\ is strongly dualisable
in the monoidal co-category FSH(TA) (X; A)®, and its dual is f.A.

(2) Let f : Y — X be a smooth and proper morphism of rigid analytic spaces. Then fyA\ is strongly
dualisable in the monoidal co-category RigSH(TA) (X;N)®, and its dual is f.A.

Proof. We only treat the case of rigid analytic motives. We need to show that there is an equivalence
between the endofunctors Hom( f4A, —) and (f.A) ® —. We have natural equivalences

Hom(f;A. ) 2 fif*(5) = fi(A® M) 2 fu(A) @ M,

where (1) is deduced by adjunction from the smooth projection formula fyfA ® — = fy o f*(-) (see
Proposition 2.2.1(2)) and (2) is deduced from Proposition 4.1.7(2). |

4.2. Weak compactifications

In this subsection, we discuss the notion of a weak compactification of a rigid analytic S-space. For us,
it will be enough to know that weak compactifications exist locally. We will also briefly discuss Huber’s
compactifications.

Definition 4.2.1. Let f : Y — X be a morphism of rigid analytic spaces. A weak compactification of f
is a commutative triangle

Y s w (130)

PN

X

https://doi.org/10.1017/fms.2022.55 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.55

Forum of Mathematics, Sigma 147

of rigid analytic spaces, where i is a locally closed immersion and £ a proper morphism. (See Definition
1.1.14.) By abuse of language, we say that & is a weak compactification of f or that W is a weak
compactification of Y. We define the category of weak compactifications of f to be the full subcategory
of (RigSpc/X) spanned by the weak compactifications of f. We say that f is weakly compactifiable if
it admits a weak compactification. (Clearly, for f to be weakly compactifiable, it is necessary that f is
separated and locally of finite type.)

Proposition 4.2.2. Let f : Y — X be a morphism of rigid analytic spaces.

(1) The category of weak compactifications of f has fiber products and equalizers. In particular, when
f Y — X is weakly compactifiable, this category is cofiltered.
(2) Assume that fis locally of finite type. Then, locally on Y, f is weakly compactifiable.

Proof. The first part follows from standard properties of proper morphisms and locally closed immer-
sions. For the second part, since the question is local on Y, we may assume that f factors through an
open subspace U C X and that Y — U is the generic fiber of a finite type morphism Y — U between
affine formal schemes. In this case, we may factor f as the composition of

N N u N 4
Y- B, - Py — X,
where s is a closed immersion, u the obvious open immersion and p the obvious projection. O

We will need a short digression concerning the notion of relative interior.

Definition 4.2.3. Let f : X — W be a morphism between rigid analytic spaces. Let V. C W be an open
subspace. We say that X maps into the interior of V relatively to W and write f(X) €w V if the closure
of f(|X]) in |W| is contained in |V|.
Remark 4.2.4. Often we use Definition 4.2.3 when f is a locally closed immersion. In this case, we
write simply ‘X ew V’ instead of ‘f(X) ew V.

Below, we use freely the fact that the underlying topological space of a rigid analytic space is valuative
in the sense of [FK 18, Chapter 0, Definition 2.3.1].

Lemma 4.2.5. Let f : X — W be a morphism between quasi-compact and quasi-separated rigid
analytic spaces. A point of |W| belongs to f(|X|) if and only if its maximal generisation belongs to
f(X]). Moreover, we have the equalities:

Faxn= () w= [) W (131)

fX)ewV fX)ewV

Proof. The first assertion follows from [FK 18, Chapter 0, Theorem 2.2.26] and the fact that f(]|X]) is
stable under generisation. It follows that f(|X|) is also stable under generisation, which implies that
f(X]) is the intersection of its open neighbourhoods. (Indeed, if w € |W| does not belong to f(|X|),

we have m N f(1X]) = 0.) This gives the first equality in equation (131). The second equality follows
from [FK 18, Chapter 0, Proposition 2.3.7]. ]

Lemma 4.2.6. Let f : X — W be a morphism between quasi-compact and quasi-separated rigid
analytic spaces. Let V. C W be an open subspace such that f(X) &w V. There exists an open subspace
V' c W such that f(X) @y V' and V' ey V.

Proof. By Lemma 4.2.5, we have

Fxn= () Wiclvl.

f(X)ewV’

By [FK18, Chapter 0, Corollary 2.2.12], there exists a quasi-compact open subspace V' c W with
f(X) @y V’ such that |[V’| C |V] as needed. O
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We now discuss Huber’s compactifications. We will freely use results and notations from Subsection
1.2. We start with a definition.

Definition 4.2.7.

(1) A Tate ring A is said to be universally uniform if every finitely generated Tate A-algebra is uniform.
(Recall that a finitely generated Tate A-algebra is a quotient of A(r) = Ag{(t)[7~'], where ¢ =
(t1,...,t,) is a system of coordinates, A9 C A a ring of definition and 7 € A a topologically
nilpotent unit contained in Ay.) In particular, a universally uniform Tate ring is also stably uniform
in the sense of [BV 18, pages 30-31]. A Tate affinoid ring R is said to be universally uniform if R*
is universally uniform.

(2) A universally uniform adic space is a uniform adic space (as in Definition 1.2.6) which is locally
isomorphic to Spa(A), where A is a universally uniform Tate affinoid ring.

Notation 4.2.8.

(1) Let S be a universally uniform adic space. We denote by Adic/S the category of uniform adic
S-spaces. We denote by Adic'™/S (resp., Adic*"/S) the full subcategory of Adic/S spanned by those
adic S-spaces which are locally of finite type (resp., which are separated of finite type).

(2) Let S be a rigid analytic space. We denote by RigSpc't/S (resp., RigSpc*!/S) the full subcategory
of RigSpc/S spanned by those rigid analytic S-spaces which are locally of finite type (resp., which
are separated of finite type).

(3) Let S be a universally uniform adic space. By Corollary 1.2.7, S determines a rigid analytic space
which we denote also by S, and we have equivalences of categories Adic'"/S =~ RigSpc'"/S and
Adic*/S ~ RigSpc*/S.

Notation 4.2.9. Let A be a Tate affinoid ring and B a Tate affinoid A-algebra. We define a new Tate
affinoid A-algebra B, = (B7, BY) by setting BX = B* and letting B; to be the integral closure of the
subring A* + B°° C B.

The following theorem is due to Huber.

Theorem 4.2.10. Let S be a quasi-compact and quasi-separated universally uniform adic space. There
is a functor Adic™ ' /S — Fun(A!, Adic/S) sending a separated adic S-space of finite type X to an open
immersion jx : X — X over S satisfying the following properties.

(1) Every point of |X€| is a specialisation of a point of |X|. Moreover, for every x € |X| and every
valuation ring V. C «*(x) containing «*(s’) for a specialisation s’ € |S| of the image of x in |S|,
there exists a unique point x’ € |X¢| which is a specialisation of x and such that k*(x") = V.

(2) The morphism Oxc — jx .Ox is an isomorphism.

(3) (Compatibility with base change) If S — S is an open immersion, then the morphism

Jx Xs 8" X xXg §" > X x5 8’
coincides with jx : X' — X'¢, where X' is the adic S’-space X Xs S’.
(4) If S = Spa(A) and X = Spa(B), then X° = Spa(B,).

Proof. This is essentially contained in [Hub96, Theorem 5.1.5]. In loc. cit., it is assumed that adic spaces
satisfy one of the conditions in [Hub96, (1.1.1)], but this is only needed to insure universal sheafyness.
Here we use instead universal uniformness and [BV 18, Theorem 7]. O

In the next proposition, we denote a uniform adic space and the associated rigid analytic space by
the same symbol. (This is an abuse of notation justified by Corollary 1.2.7.)

Proposition 4.2.11. Let S be a quasi-compact and quasi-separated universally uniform adic space, and
let X be a separated adic S-space of finite type. Let i : X — W be a weak compactification of X over S.
Then, X€ is naturally a weak limit of the rigid analytic pro-space (V)xe,, v in the sense of Definition
2.8.10.
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Proof. By the universal property of Huber’s compactifications (see [Hub96, Theorem 5.1.5]), the locally
closed immersion i extends to a morphism i’ : X¢ — W. Since i’(|X€|) is contained in the closure of
| X| in |W|, there is a natural map

X¢ = (Vixey v, (132)

and we need to prove that it exhibits X as a weak limit of (V)xe,, v.
We first check that the map

IX¢] - Lim |V| (133)
XewV

is a bijection. Injectivity is clear since each locally closed immersion X — V, with X ew V, induces
an injection |X¢| — |V°¢| and the map |X¢| — |V| factors this injection. For surjectivity, we use Lemma
4.2.5 which implies that every point v € limxe,, v V| is a specialisation of a point x € |X|. Thus, we
have x(v) = «x(x) and «*(s) C k" (v) C k" (x). By Theorem 4.2.10(1), the valuation ring «*(v) C «(x)
determines a point of |X°| which is necessarily sent to v by the map (132) since W — S is separated.
It remains to see that for every point x of |X°| with image v in limxe,, v |V| the map «(v) — «(x)
has dense image. In fact, we have x(v) =~ «(x). To prove this, we may assume that x belongs to | X| since
the residue field of x is equal to the residue field of its maximal generisation and similarly for v. The
claimed result is then clear since X — (V)xe,, v is given by locally closed immersions. O

4.3. The exceptional functors, 1. Construction

In this subsection, we define the exceptional functors f; and f' associated with a morphism f of rigid
analytic spaces which is locally of finite type and establish some of their basic properties. We start with
the easy case of a locally closed immersion.

Lemma 4.3.1. Let i : Z — X be a locally closed immersion of rigid analytic spaces. Let U C X be

an open neighbourhood of Z in which Z is closed. Denote by s : Z — U and j : U — X the obvious
immersions. Then, the composite functor

Ji o 5. : RigSHYY (Z; A) — RigSHY (X; A)

is independent of the choice of U, and we denote it by i,.

Proof. Let U’ c U be an open neighbourhood of Z. Let s’ : Z — U’ and u : U’ — U be the obvious
immersions. We need to show that uy o s, =~ s,. To do so, we use the Cartesian square

Z:

U ——

s

—N

c

and Proposition 2.2.3(4). ]

Lemma 4.3.2. Let s : Y — X andt : Z — Y be locally closed immersions of rigid analytic spaces.
There is an equivalence (s o t), = sy o t| of functors from RigSH(TA) (Z;A) to RigSH(TA) (X; A).
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Proof. Indeed, let U C X be an open neighbourhood of Y in which Y is closed, and let V C U be an
open neighbourhood of Z in which Z is closed. Set W = Y N V. Consider the commutative diagram with
a Cartesian square

Using Proposition 2.2.3(4), we have natural equivalences

ugoc,owgoe,~ugovgod,oe, = (uovyo(doe),
as needed. O
Proposition 4.3.3. Consider a Cartesian square of rigid analytic spaces

i’

—

T Y
ol
X

4

zZ——X,

where i is a locally closed immersion.

(1) There is a natural equivalence f* oi, = il o f™ between functors from RigSH(TA) (Z;A\) to
RigSH" (Y; A).

(2) Assume that fis a proper morphism. There is a natural equivalence f, oij = i o f, between functors
from RigSH(TA) (T;A) to RigSH(TA) (X; A).

Proof. Part (1) follows from Proposition 2.2.3(4) and part (2) follows from Theorem 4.1.4. m|

We next discuss the case of weakly compactifiable morphisms.

Definition 4.3.4. Let f : Y — X be a weakly compactifiable morphism of rigid analytic spaces. Choose
a weak compactification

Yy s w

x )

X
of f and define the functor
£ : RigSHY (¥; A) — RigSH™ (X; A)

by setting fi = h, oi. It follows from Corollary 4.1.6 that the functor f; is colimit-preserving; we denote
by f* its right adjoint. The functors f; and f* are called the exceptional direct and inverse image functors.

Lemma 4.3.5. Keep the notations as in Definition 4.3.4. The functor f is independent of the choice of
the weak compactification of f.
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Proof. Leti’ : Y — W’ be a second weak compactification of f, and denote by A’ : W' — X the
structural projection. Without loss of generality, we may assume that W is finer than W. Let U ¢ W be
an open neighbourhood of Y in which Y is closed, and let U ¢ W’ be the inverse image of U. We then
have a commutative diagram with a Cartesian square

-

, U -l w ;
S
Y/ g g\X

We need to compare . o jy o 5. with hj o jj; o s,. We have natural transformations

Uu—-—~w

h*Ojﬁos*z/’l*Ojﬁoglos;—>/’l*og*ojéos;zh;ojéos;’
where the middle one is an equivalence by Theorem 4.1.4. o

Example 4.3.6. Using Lemma 4.3.5 and a well-chosen weak compactification, we obtain the following
particular cases.

(1) If j : U — X is an open immersion, then j, = jy and jhe g
(2) If f : Y — X is proper, then fi = f..

Remark 4.3.7. At this point, we have constructed, for each weakly compactifiable morphism f : ¥ — X
of rigid analytic spaces, a functor f; : RigSH(TA)(Y;A) — RigSH(TA)(X ;A). Due to the choice of a
weak compactification involved in the construction, it is not clear why f +— f; would be functorial in
any sense. The main goal of the remainder of this subsection is to prove that in fact it is, as long as
we restrict to morphisms between weakly compactifiable rigid analytic spaces over a fixed base. (Note
that morphisms between such spaces are automatically weakly compactifiable so that our construction
applies.)

Notation 4.3.8. Let S be a rigid analytic space.

(1) We denote by RigSpc™©/S c RigSpc/S the full subcategory of weakly compactifiable rigid analytic
S-spaces. Recall that, by definition, RigSpc*©/S is contained in RigSpc'™/S (see Notation 4.2.8(2))
and that every object in RigSpc'™ /S is locally isomorphic to an object of RigSpc™©/S by Proposition
4.2.2.

(2) We denote by RigSpcP™P/S c RigSpc/S the full subcategory of proper rigid analytic S-spaces.

(3) We denote by WComp/S the category whose objects are pairs (X, W) where X is a rigid analytic
S-space and W a weak compactification of X. There are functors

ds : WComp/S — RigSpc™/S and wg : WComp/S — RigSpc??/S
sending a pair (X, W) to X and W, respectively.
Proposition 4.3.9. Let S be a rigid analytic space. There is a functor

RigSH'™ (=; A), : RigSpc™©/S — Pr- (134)

sending an object X to the oco-category RigSH(TA) (X; A) and a morphism f to the functor f.

We fix a rigid analytic space S. The functor (134) will be constructed below, and the fact that it
extends the functors in Definition 4.3.4 is proven in Lemma 4.3.14. We start by constructing a similar
functor defined on WComp/S.
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Notation 4.3.10. Given an object (X, W) in WComp/S, we denote by RigSH(TA) (X, W); A), the full
sub-co-category of RigSH(TA) (W; A) spanned by the essential image of the fully faithful embedding

i\ : RigSHY (X; A) — RigSH™ (W; A), (135)

where i : X — W is the given locally closed immersion.
Proposition 4.3.11. Let (f, h) : (X', W’) — (X, W) be a morphism in WComp/S.

(1) The functor
h, : RigSH™ (W’; A) — RigSH\Y (W; A)
takes RigSH(TA) (X', W"); A) into RigSHf,A) (X, W); A), and induces a functor
(. h)r : RigSH{ (X', W); A)y — RigSH{ (X, W); A). (136)

(2) There is a commutative square

RigSHY" (X’; A) —— RigSHY" (X", W'); A),

Jﬁ l(f»h)!

RigSHY" (X; A) —— RigSHY" (X, W); A),,

where the horizontal arrows are equivalences.
(3) Iffis an isomorphism, then (f, h), is an equivalence of co-categories.

Proof. Consider the commutative diagram with a Cartesian square

TN

X L sv—w

Nl L

X——W.
By Lemma 4.3.2, we have i] =~ v, o uy. Thus, the essential image of i| is contained in the essential image
of vi. On the other hand, by Proposition 4.3.3(2), we have A, o v, :'l.! o h!. Thus, h, takes the essential
image of v, into the essential image of i;, which proves the first statement.
Next, we verify the second statement. Note that V is a weak compactification of X’ over X. Thus, by
Lemma 4.3.5, we have f; =~ A/, o uy. Using Proposition 4.3.3(2) again, we obtain natural equivalences

irofi=ijohlou =~ h,oviou = h,oli.

This gives the commutative square in the second statement. Finally, the third statement follows from the
second one using Lemma 4.3.5. O

Notation 4.3.12. We will denote by

RigSH\"Y (=; A)* : RigSpc® — Pr" (137)
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the functor from Proposition 2.1.21 (in the T-stable case and after forgetting the monoidal structure)
and by

RigSH\"Y (=; A), : RigSpc — Pr} (138)

the functor deduced from the functor (137) using the equivalence (Pr')°P ~ PrR. By Corollary 4.1.6,
the restriction of the functor (138) to RigSpcP™P/S yields a Pri-valued functor. In particular, we have a
functor

RigSH'" (wg(-); A), : WComp/S — Pr-. (139)

To go further, we need the following well-known general lemma.

Lemma 4.3.13. Let B be a simplicial set, and let C : B — CATs be a diagram of co-categories.
Assume that, for each vertex x € By, we are given a full sub-co-category C’(x) C C(x). Assume also
that, for every edge e € By, the functor C(ey) — C(ey) takes C’(eg) into C’'(ey). Then, there exists a
diagram C’ : B — CAT, and a natural transformation ¢’ — © such that for every edge e € By, C’(e)
is equivalent to the functor induced from C(e) on the sub-co-categories C'(ey) and C'(ey).

Proof. By Lurie’s unstraightening [Lur(09, §3.2], one reduces to prove an analogous statement for co-
Cartesian fibrations which is easy and left to the reader. O

By Proposition 4.3.11(1), we may apply Lemma 4.3.13 to the functor (139) and the full sub-co-
categories introduced in Notation 4.3.10. This yields a functor

RigSH™ (-, -); A) : WComp/S — Pr*. (140)

(The fact that this functor lands in Pr™ and not just in CAT,, follows from Corollary 4.1.6 together with
Proposition 4.3.11(2).) By left Kan extension along the functor dg, we obtain from the functor (140) a
functor

RigSH\"” (—; A), : RigSpc™/S — Pr*. (141)

The following lemma shows that this left Kan extension behaves as we want it to.

Lemma 4.3.14. The obvious natural transformation
RigSH!" (-, -); A), — RigSHY" (= A), 0 bg (142)

is an equivalence. In particular, the functor (141) sends a morphism f : Y — X in RigSpc%/S to the
functor f of Definition 4.3.4.

Proof. Given an object X € RigSpc™°/S, there is an equivalence in Prl:

RigSH (X; A), ~ li RigSH™ (¥, W): A),, 143
igSH: (X; A) (y,w>e°((\’vlc?mp/s>,x igSH " ((Y, W); A) (143)

where the category (WComp/S),x consists of pairs (Y, W) with Y a rigid analytic X-space and W a
compactification of Y over S. Fix a weak compactification P of X over S. There is an obvious forgetful
functor

a : (WComp/S),(x,p) — (WComp/S),x

admitting a right adjoint 8 given by (Y, W) +— (Y, W Xg P). Moreover, it follows from Proposition
4.3.11(3) that the counit of the adjunction @ o 8 — id induces an equivalence between the functor

RigSH\" (-, -); A) : (WComp/S),x — Pr"
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and its composition with the endofunctor a o 8 of (WComp/S),x. Since 8 is right adjoint to a,
composition with S is equivalent to left Kan extension along «. This implies that the colimit in equation
(143) is equivalent to

li Ro SH(/\) Y,W ,A ~ R- SH(/\) X’P ;A
(Y,W)E(\(’:\’%;III{]I;)/S)/(X’P) 1g T (( ) )! 1g T (( ) )!

since (X, P) is the final object of (WComp/S),(x, p). This proves the lemma. O

Corollary 4.3.15. Let X be a weakly compactifiable rigid analytic S-space, and let Op/ X be the category
of open subspaces of X. Then, the functors

RigSH" (—; A) : Op/X — Pi* and RigSHY (=;A)* : (Op/X)*® — P} (144)

are exchanged by the equivalence (Pr)°P ~ PR,

Proof. Let P be a weak compactification of X. Then, for every open subspace U C X, P is also a
weak compactification of U. Thus, we have a functor Op/X — WComp/S given by U +— (U, P).
Therefore, by Lemma 4.3.14, the first functor in equation (144) is equivalent to the functor given by

U RigSH(TA) ((U, P); A),. It is immediate from the construction of the functor (140) that this functor
is equivalent to the one sending an open immersion # : U — X to the essential image of the fully
faithful embedding uy. This proves the corollary. O

Remark 4.3.16. Using the equivalence (Pr)°P ~ PrR, the functor (134) gives rise to a functor
RigSH™ (—; A)' 1 (RigSpc™©/S)*® — PrR (145)

sending a morphism f to the functor f".
Proposition 4.3.17. The functor (145) is a PrR-valued sheaf for the analytic topology.

Proof. Itis enough to show that, for every X € RigSpc™/S, the restriction of the functor (145) to Op/X
is a sheaf for the analytic topology. This follows from Corollary 4.3.15 and Theorem 2.3.4. (Indeed,
the inclusion functors Pr — CAT., and Pr® — CAT,, are limit-preserving by [Lur09, Proposition
5.5.3.13 & Theorem 5.5.3.18].) m]

Corollary 4.3.18. There is a unique extension of the functor (134) into a functor
RigSH" (=; A), : RigSpc'/s — Pr- (146)
such that the following condition is satisfied. The functor
RigSH{" (= A)' : (RigSpe!/$) — Pr¥, (147)

obtained from the functor (146) using the equivalence (Pr-)°P =~ PR is a PrR-valued sheaf for the
analytic topology.

Proof. This follows from Proposition 4.3.17 using Lemma 2.1.4. Indeed, a PrR-valued 7-sheaf on a site
(€, 1) is equivalent to a limit-preserving functor on Shv;(€C)°P; see Definition 2.3.1. O

Remark 4.3.19. At this point, it is unclear that the co-category RigSH(TA) (X; A) is equivalent to the co-
category RigSH(TA) (X; A) for a general object X € RigSpc!™/S. This will be proven in Subsection 4.4;
see Corollary 4.4.23 below. When X is weakly compactifiable, this is already stated in Proposition 4.3.9.

We end this subsection with the following result relating our approach to the one in [Hub96, §5.2].
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Theorem 4.3.20. Let X and Y be quasi-compact and quasi-separated uniform adic spaces, and let
f Y — X be a weakly compactifiable morphism of rigid analytic spaces. Let f¢ : Y¢ — X be the
projection of Huber’s compactification of Y over X, and j : Y — Y€ the obvious inclusion. Assume one
of the following two alternatives.

(1) We work in the nonhypercomplete case, and X is locally of finite Krull dimension. When 7 is the
étale topology, we assume furthermore that A is eventually coconnective.
(2) We work in the hypercomplete case, and X is (A, T)-admissible (see Definition 2.4.14).

Then, the functor fi of Definition 4.3.4 coincides with the composite functor f;; o jy.

Proof. Fix a weak compactification W of Y over X, andlet A : W — X andi : Y — W be the given
morphisms. The morphism i extends to a morphism i’ : Y¢ — W. We have f{ =~ h,oi.. Thus, we only
need to show that there is an equivalence i} o jy ~ i). The Cartesian square

Y—>YC

I

Y—>W

and Proposition 4.3.3(1) give an equivalence i”* o7y =~ j, = jy. Thus, it is enough to show that the
morphism

i!—>i;0i'*0i1

is an equivalence. By Proposition 4.2.11, Y* is the weak limit of the rigid analytic pro-space (V)ye, v.
It follows from Theorem 2.8.15 that there is an equivalence of co-categories

colim RigSH" (V; A) — RigSH\"" (Y¢; A).
YewV

Arguing as in the proof of Lemma 3.5.7 (see also Remark 3.5.8), we deduce an equivalence

colimry ,ory ~iloi”

YewV
where, for an open subspace U ¢ W, ry : U — W denotes the obvious inclusion. Therefore, it is
enough to prove that

Iy > Ty .ory ol

is an equivalence for every V. C W such that Y €w V. Letting Q be the open subspace of W with
underlying topological space |Q| = [W]| \ |Y]|, we have W = V U Q. So it suffices to prove that

ry oly—ryory sory oy and rgol = rgory wory ol

are equivalences. For the first one, we use that r;‘, ory, s = id. For the second one, we use Proposition
4.3.3(1) and the fact that ¥ Xy Q = 0, which imply that the source and the target of the natural
transformation are the zero functor. ]

Remark 4.3.21. Theorem 4.3.20 can be extended to separable morphisms of finite type which are
not assumed to be weakly compactifiable. Indeed, one can construct a variant of the functor (134)
using Huber’s compactifications (instead of weak compactifications) and show that this new functor
coincides with the functor (134) on RigSpc™*/S and gives rise to a sheaf for the analytic topology via
the equivalence (Pr™)°P ~ PrR. We will not pursue this further in this paper and leave it to the interested
reader.
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4.4. The exceptional functors, I1. Exchange

The goal of this subsection is to prove Theorem 4.4.2 below and derive a few consequences. This
theorem can be seen as a strengthening of Corollary 4.3.18 and gives a way to encapsulate the coherence
properties of the exchange equivalences between the ordinary inverse (resp. direct) image functors and
the exceptional direct (resp., inverse) image functors. It should be mentioned that Theorem 4.4.2 is not
the best possible statement one could hope for. For a better statement, we refer to Theorem 4.4.31 below
whose proof relies unfortunately on unproven claims in [GR17] concerning (oo, 2)-categories. However,
Theorem 4.4.2 is probably good enough in practice.

Notation 4.4.1. Given a simplicial set B and a diagram € : B — CAT., we denote by /B C—-Ba
co-Cartesian fibration classified by C. When B is an ordinary category and € takes values in the sub-co-
category of CAT,, spanned by ordinary categories, we take for /  C the ordinary category given by the

Grothendieck construction. In particular, objects of fB C are represented by pairs (b, ¢), where b € B
and ¢ € C(b).

Theorem 4.4.2. There are functors

RigSHY (—; A) / RigSpc!t — Pr
’ RigSpc?
(148)
op
RigSH" (—; A)! ( / Rigspclﬂ) — PR
RigSpc®P

which are exchanged by the equivalence (Pr™)°P =~ PrR and which admit the following informal descrip-
tion.

o These functors send an object (S, X), with S a rigid analytic space and X an object of RigSpc'"'/$, to
the co-category RigSH(TA) (X; A).

o These functors send an arrow (g, f) : (S,Y) — (T, X), consisting of morphisms g : T — S and
f:TxsY — X, to the functors fi o g"* and g’ o f*, respectively, with g’ : T Xs Y — Y the base
change of g.

Moreover, the functors in equation (148) satisfy the following properties.

(1) The ordinary functors

RigSH(TA)(—;A)* : RigSpc® — Pr-

(149)
RigSH\" (=; A), : RigSpc® — PR

(as in Notation 4.3.12) are obtained from the functors in equation (148) by composition with the
diagonal functor RigSpc®? — fRigSpc"P RigSpc'™, given by S + (S, S).
(2) For a rigid analytic space S, the functors
RigSH" (—: A), : RigSpc!t/s — Pr-

A (150)
RigSH\"Y (—; A)" : RigSpc!/s — PR

(as in Corollary 4.3.18) are obtained from the functors in equation (148) by restriction to
RigSpc'™/s.

To construct the functors in equation (148), we start with the functor

RigSHM (—; A)™* / (RigSpcP™P)°P — prl (151)
RigSpc®P
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admitting the following informal description.

o Itsends a pair (S, X), with S a rigid analytic space and X an object of RigSpcP™P /S, to the oo-category
RigSH™ (X; A).

o Itsends an arrow (g, f) : (S, X) — (T,Y), consisting of morphisms g : 7 — Sand f : Y — T Xs X,
to the functor f* o g’ with g’ : T Xg X — X the base change of g.

Said differently, equation (151) is the composition of

RigSH!" (-1 A)*
/ (RigSpcP™P)°P — RigSpcP -t R prt,
RigSpc°P
where the first functor is given by (S, X) +— X. We will apply to the functor (151) the following general
construction.

Construction 4.4.3. Let B be a simplicial set, p : € — B a co-Cartesian fibration and D : £ — CAT,
a functor. We assume the following condition.

(%) For every commutative square

[,k

X —Y

in € such that g and g’ are p-co-Cartesian, and p(f) and p(f’) are identity morphisms, the
associated square

D(X) —— DY)

L

DX') — DY)

is right adjointable.

Let p’ : & — B be a co-Cartesian fibration which is opposite to &, i.e., if p is classified by a diagram
C: B — CAT., then p’ is classified by the diagram C°? : B — CAT,, obtained by composing € with
the autoequivalence (—)° of CAT. In particular, for b € B, the fiber &) of p” at b is equivalent to
the opposite of the fiber £ of p at b. Similarly, given a p-co-Cartesian edge A — B in €, there is an
associated p’-co-Cartesian edge A’ — B’ in £’ such that A’ and B’ are the images of A and B by the
equivalences between the fibers of p and the opposite of the fibers of p’.

Then, there exists a diagram D’ : £’ — CAT,, which admits the following informal description.

(1) For b € B, the functor fD’lg;) : &, — CAT lands in CATR | and it is deduced from the functor
Dle, : € — CATY, using the equivalences &7 ~ (€;,)°P and CAT, ~ (CATK,)*P.

(2) Given a p-co-Cartesian edge A — B in & with corresponding p’-co-Cartesian edge A’ — B’, the
associated functor D(A) — D(B) is equivalent to the functor D’(A’) — D’(B’).

The diagram D’ is constructed as follows. Consider the co-Cartesian fibration g : ¥ — € classified by
D. By [Lur(09, Proposition 2.4.2.3(3)], po g : ¥ — B is a co-Cartesian fibration and ¢ sends a p o g-co-
Cartesian edge to a p-co-Cartesian edge. Applying straightening to p o g and p, we obtain a morphism
¢ : N — Cin Fun(B, CAT.) between the diagrams N : B — CAT, and € : B — CAT., classifying
p o g and ¢, respectively. Note that for b € B, the functor ¢(b) : N(b) — C(b) is equivalent to the
functor g : F — &; induced on the fibers of p o g and p. Hence, ¢(b) is a co-Cartesian fibration.
Condition (*) is equivalent to the following one.
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(x”) Forevery b € B, the co-Cartesian fibration ¢(b) : N (b) — C(b) is also a Cartesian fibration, and,
for every edge by — b, in B, the associated commutative square

N(bo) —— N(D1)
ltﬁ(bo) J‘/’(bl)
C(bg) — C(b1)

is such that the functor M (by) — N (b)) takes a ¢(by)-Cartesian edge to a ¢(b)-Cartesian edge.

Passing to the opposite co-categories, condition (x”) says that the natural transformation ¢°P : P — C°P
sends a vertex b € B to a co-Cartesian fibration and an edge of B to a functor preserving co-Cartesian
edges. Applying unstraightening to ¢°P, we obtain a commutative triangle

where p’ and p’ o g’ are the co-Cartesian fibrations classified by C°P and 9t°P. We may assume that ¢’
is a fibration for the co-Cartesian model structure on (SetZ) /B (see [Lur(09, Proposition 3.1.3.7]) which
insures that ¢’ is an inner fibration (by using [Lur09, Remark 3.1.3.4]). In this case, ¢’ is also a co-
Cartesian fibration. To prove this, we argue as in the proof of Lemma 3.4.6. More precisely, by [Lur09,
Proposition 2.4.2.11], we know that ¢’ is a locally co-Cartesian fibration and, by [Lur09, Proposition
2.4.2.8], it remains to check that locally ¢’-co-Cartesian edges can be composed. This follows from the
characterisation of locally g’-co-Cartesian edges given in [Lur(09, Proposition 2.4.2.11] and condition
(x). That said, the announced diagram ®’ : &’ — CAT, is the one obtained from ¢’ by straightening
and composing with the autoequivalence (—)° of CAT.

Remark 4.4.4. Continuing with the notation and assumptions of Construction 4.4.3,lets : B — Ebe a
co-Cartesian section. This corresponds, by straightening, to a natural transformation from the constant
diagram {*} : B — CAT to C. Passing to opposite functors and unstraightening, we obtain another
co-Cartesian section s’ : B — &’. It follows from the construction that the two composites

BSeS AT, and B e 2 ATy,

are the same.

Lemma 4.4.5. The condition (x) in Construction 4.4.3 is satisfied for p the co-Cartesian fibration
fRigSpcop (RigSpcPP)°P — RigSpc®P, given by (S, X) > S, and D the functor (151) composed with the

inclusion Pr* — CAT.

Proof. A commutative square as in condition (x) corresponds to a square of the form

(ids, f)
—

(8. X) (8.Y)

(gsidx’)J l(g,idy’)
@
(1, x7y 900 oy,

where g : T — S is a morphism of rigid analytic spaces, f : ¥ — X a morphism in RigSpcP™P /S, and
f’ Y’ — X’ the base change of f along g. Letting g’ : X’ — X and g”’ : Y’ — Y be the base changes
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of g, the functor (151) takes the above square to the commutative square of co-categories

RigSHY (x; A) —L s RigSHY (¥; A)

RigSHYY (X A) =L RigSH\" (Y"; A).

The morphism f, being a morphism of proper rigid analytic S-spaces, is proper. Thus, the right ad-
jointability of the above square follows from Theorem 4.1.4(1). O

By Lemma 4.4.5, we may use Construction 4.4.3 to obtain a functor
RigSHY (= A)* / RigSpcP™P — Prl. (152)

RigSpcP

More precisely, the composition of the functor (152) with Pr — CAT,, is the functor D’ when we take
for © the composition of the functor (151) with Pr — CAT.,; That the resulting functor ®’ lands in
Pr! follows from Corollary 4.1.6. The functor (152) admits the following informal description.

o It sends a pair (S, X), with S a rigid analytic space and X an object of RigSpcP™P /S, to the co-category
RigSH™ (X; A).

o Itsends an arrow (g, f) : (S,Y) — (T, X), consisting of morphisms g : T — Sand f : TXsY — X,
to the functor f, o g’ with g’ : T Xg Y — Y the base change of g.

Integrating the functors wgs from Notation 4.3.8, we obtain a functor
w: / WComp — RigSpcP™P. (153)
RigSpc®P RigSpc®P
Composing with the functor (152), we obtain a functor

RigSH™ (w(-); A)F : / WComp — Pr-. (154)
RigSpc®P

Notation 4.4.6. Given (S, (X,W)) € fRigspd,p WComp, we denote by RigSH(TA) ((X,W);A); the full

sub-co-category of RigSH(TA) (W; A); introduced in Notation 4.3.10, i.e., the essential image of the fully
faithful embedding (135).

The next statement is a strengthening of Proposition 4.3.11(1).

Proposition 4.4.7. Given an arrow (g, (f,h)) : (S,(Y,Q)) — (T,(X,P)) in fRigSpCOp WComp, the
associated functor

RigSH" (Q; A)! — RigSH!" (P A); (155)
takes RigSHiA) ((Y,0); N, into RigSH(TM ((X, P); A); and induces a functor
RigSH{" (Y, 0): A); — RigSH" (X, P); A);. (156)
Proof. Using Proposition 4.3.11(1), we only need to treat the case of a morphism of the form

(g,id,id) : (S, (Y,Q)) = (T, T xs Y, T x5 Q).
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In this case, we need to show that the functor
R N - : (A) .
g" : RigSH7 " (Q; A) — RigSH; " (T xs Qs A),

with g’ : T Xs Q — Q the base change of g, sends the essential image of i, with i : ¥ — Q the given
immersion, to the essential image of i}, with i’ : T Xs ¥ — T Xs Q the base change of i. This follows
immediately from Proposition 4.3.3(1). O

Combining Proposition 4.4.7 with Lemma 4.3.13, we deduce a functor

RigSH" (-, -); A); / WComp — Pr*, (157)
RigSpc®?

and this functor restricts to equation (140) on WComp/S for every rigid analytic space S. Integrating
the functors dg from Notation 4.3.8, we obtain a functor

b: WComp — RigSpc™ (158)
RigSpc®P RigSpc®P

given by (S, (X,W)) — (S, X). By left Kan extension along the functor (158), we obtain from the
functor (157) a functor

RigSH" (—; A); / RigSpc™® — Pr-. (159)
’ RigSpc®?

We gather a few properties satisfied by this functor in the following lemma.
Lemma 4.4.8.
(1) The obvious natural transformation

RigSH(" (-, -); A)} — RigSH;"” (= A)} oD

is an equivalence.
(2) Composing the functor (159) with the diagonal functor

RigSpc® — RigSpc™*
RigSpc®P

yields the ordinary functor RigSH(TA) (=; A)* : RigSpc® — Prt.
(3) For a rigid analytic space S, the restriction of the functor (159) to RigSpc™/S is equivalent to the
Sfunctor RigSH(TA) (=; A), : RigSpe™¢/S — Pr" of Proposition 4.3.9.
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Proof. The third assertion follows from [Lur(09, Proposition 4.3.3.10]. Using this and Lemma 4.3.14,
we deduce the first assertion. For the second assertion, we argue as follows. By the first assertion, it
suffices to describe the composition of the functor (157) with the diagonal functor

RigSpc®? — WComp
RigSpc®P
given by S — (S, (S,S5)). In this composition, we may replace the functor (157) by the functor (154)
without changing the result. In other words, our functor is the composition of

RigSH!" (— A);
RigSpc® 4 RigSpcPP RSt 0, P,
RigSpcP
where A is the diagonal functor given by S +— (S, S). Since A is a co-Cartesian section, the result
follows from Remark 4.4.4. O

For later use, we also record the following fact.

Lemma 4.4.9. Let S be a rigid analytic space, and let X € RigSpc™©/S. Then, the composition of the
Sunctor (159) with the functor

(RigSpc/S)? — RigSpc™©,
RigSpc®P

givenby T — (T,T Xs X), is equivalent to the functor
RigSH" (- x5 X; A)* : (RigSpe/S)*® — Pr-.

Proof. We first reduce to the case where the rigid analytic S-space X is proper. To do so, we fix a weak
compactification W of X, and consider the functors

Ax : (RigSpc/S)? — RigSpc™ and Aw : (RigSpc/S)P — RigSpc™©
RigSpc? RigSpcP

givenby T +— (T, Txs X)and T +— (T, T x5 W), respectively. The given immersion : X — W induces
a natural transformation i : Ax — Aw. Applying the functor (159), we obtain a natural transformation

i, : RigSHY (= A)f o Ax — RigSHYY (= A) 0 Ay .

On T € RigSpc/S, the natural transformation 1, is given by the fully faithful embedding (7" Xg ). It
follows that RigSH(TA) (=3 A)] o Ax can be obtained from RigSH(TA) (=3 A)] o Aw by applying Lemma
4.3.13 to the essential images of the functors (T Xg i), for T € RigSpc/S. Using Proposition 4.3.3(1),
we see that it is enough to prove that RigSH(TA) (=3 A) o Aw is given by RigSH(TA) (= xs W;A)*. Said
differently, we may assume that X is proper over S.

We now prove the lemma assuming that X is proper over S. (The argument is the same as the one
used for the proof of Lemma 4.4.8(2).) By Lemma 4.4.8(1), it is enough to prove the same conclusion
for the composition of the functor (157) with the functor

A% : (RigSpe/S)?P — WComp,
RigSpc®P

given by T +— (T,(T Xs X,T Xs X)). In this composition, we may replace the functor (157) by the
functor (154) without changing the result. Since A% is a co-Cartesian section, the result follows from
Remark 4.4.4. m}
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By Lemmas 4.4.8 and 4.4.9, the functor (159) admits the following informal description.

o It sends an object (S, X), with S a rigid analytic space and X an object of RigSpc™/S, to the oco-
category RigSH(TA) (X5 A).

o It sends an arrow (S,Y) — (7T, X), consisting of morphisms g : 7 — Sand f : T Xs Y — X, to the
functor f o g”* with g’ : T Xg Y — Y the base change of g.

Finally, we define the functor

RigSH™ (= A); / RigSpc'™ — Prt (160)
) RigSpc®

to be the left Kan extension of the functor (159) along the fully faithful inclusion
L: / RigSpc™® — RigSpc't. (161)
RigSpc? RigSpc?

Note that the functor (160) is an extension of the functor (159) in the usual sense, i.e., the restriction of
the functor (160) along ¢ is indeed the functor (159).

Proposition 4.4.10. For a rigid analytic space S, the restriction of the functor (160) to RigSpc't/§ is
equivalent to the functor

RigSH'" (=; A), : RigSpc't/s — Pr*
of Corollary 4.3.18.

Proof. By [Lur09, Proposition 4.3.3.10], it is enough to show that the functor RigSH(TA) (=;A) in
Corollary 4.3.18 is a left Kan extension of the same-named functor in Proposition 4.3.9. Using the
equivalence (Pr)® ~ PrR_ it is equivalent to show that the functor RigSH'" (—; A)' in Corollary
4.3.18 is the right Kan extension of the same-named functor in Remark 4.3.16. Since the former was
defined as the unique PrR-valued sheaf for the analytic topology extending the latter, the result follows
from Lemma 4.4.11 below. |

Lemma 4.4.11. Let (€', 1) be a site with C’ an ordinary category admitting finite limits. Let C c ¢’
be a full subcategory closed under finite limits, and let T be the induced topology on C. Assume that
the morphism of sites (C’,7") — (C, 1) induces an equivalence between the associated ordinary topoi.
(Equivalently, every object of C’ admits a cover by objects in C.) Let ‘D be an co-category admitting
limits, and let F : C°° — D be a D-valued t-sheaf on C. Then, the right Kan extension F’ : C"°? — D of
F along the inclusion C°P — C’°P s a T’-sheaf. More precisely, F' is the image of F by the equivalence
of co-categories Shv;(C; D) — Shv(€’; D).

Proof. By Lemma 2.1.4, we have an equivalence of co-topoi Shv/ (€”) ~ Shv,(€). Since Shv.(C; D)
can be identified with the co-category of limit-preserving functors from Shv,(€) to D and similarly for
¢’, we deduce an equivalence of co-categories Shv,/(C’; D) =~ Shv,(€C; D). This equivalence is given
by the restriction functor. Since the restriction of F” to € is equivalent to F, we only need to prove that
F’ is a 7’-sheaf. For d € D, denote by y(d) : D — 8 the copresheaf corepresented by d. The functors
y(d), for d € D, form a conservative family of limit-preserving functors. Thus, it is enough to show
that y(d)(F"’) is a 7’-sheaf for every d € D. Since y(d)(F’) is the right Kan extension of y(d)(F), we
are reduced to prove the lemma with D the co-category of spaces S.

Recall that we need to show that F” is a sheaf. Since D = §, we have at our disposal the sheafification
functors, and these commute with restriction along the inclusion ¢ — C’. Let F”’ be the 7’-sheaf
associated to F’. Since F’|e =~ F is already a 7-sheaf, it follows that F — F”’ induces an equivalence
after restriction to C. By the universal property of the right Kan extension, there must be amap F’" — F’
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such that F — F”" — F’ is homotopic to the identity of F’. Thus, F”’ is a retract of the 7’-sheaf F"’.
This proves that F”’ is also a 7’-sheaf (and that F’ ~ F""). o

Remark 4.4.12. The category

op
Q= ( / RigSpclft)
RigSpc®P

admits a natural topology, called the analytic topology and denoted by ‘an’. It is induced by a pretopology
Covy, in the sense of [SGAIV 1, Exposé II, Définition 1.3], which is given as follows. For (S, X) € Q,
a family ((S;, X;) — (S, X)); belongs to Covy,y (S, X) if (S; — S); is an open cover of S, and the
morphisms S; Xg X — X; are isomorphisms.

Proposition 4.4.13. The functor (160) is a sheaf for the analytic topology on Q.

Proof. Fix an object (S_1, X) in Q, and let S, be a truncated hypercover of S_; in the analytic topology.

We assume that the S,,’s are coproducts of open subspaces of S_;. Forn € N, we set X,, = §,, Xs | X
and similarly for every rigid analytic S_;-space. We need to show that

RigSHY ((S_1, X): A); — Jim, RigSHY" (S, X,): A); (162)
n|e

is an equivalence. By Lemma 4.4.11, the functor
RigSH™ (S, xs_, —: A); : Op/X — Pr*

is the left Kan extension of its restriction to the subcategory Op“/X c Op/X spanned by those open
subspaces of X which are weakly compactifiable over S_;. Using Proposition 4.4.10, we deduce that

RigSH\" ((S,,, X,); A)f = colim  RigSHY" ((S,., U,); A,
T UeOp™/Xx :

where the colimit is taken in Pr™. Thus, we are reduced to showing that

colim ngSH(A)((S LU)A) — hm colim ngSH(A)((Sn,U )i N[ (163)
UeOp*°/X [n]€A UeOp™ /X

is an equivalence. We want to apply [Lurl7, Proposition 4.7.4.19] for commuting the limit with the

colimit in the right-hand side of equation (163). For this, we need to show that for every [n’] — [n] in
A and every inclusion U — U’ in Op™“/X, the associated square

RigSHY" (S, Up); A); —— RigSHY (S5, UJ); A);

| J

RigSHY" (S, Un); A); — RigSHY (S, U},): A);

is right adjointable. Let g : S,y — S, be the morphism induced by [n’] — [n],and let g’ : U,y — U,
and g” : U], — U, be the morphisms obtained by base change. Let u : U — U’ be the obvious
inclusion, and let u,, : U, — Uy and u,y : U,y — U,, be the morphisms obtained by base change. Then,
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using Lemma 4.4.8 and looking back at the construction of the functor (157), we see that the above
square is equivalent to

RigSH!" (U,; A) — RigSH") (U A)

RigSH\" (U,: A) —% RigSH{" (U”,: A)

which is clearly right adjointable. Thus, [Lurl7, Proposition 4.7.4.19] applies, and we are left to showing
that

RigSH" (51, U); A); — lim RigSH." ((Sy, Un); M)} (164)
nje

is an equivalence for every U € Op™°/X. Said differently, we may assume that X is weakly compactifi-
able. In this case, we may use Lemma 4.4.9 to rewrite the functor (162) as follows:

RigSHY (X; A)* — Jim RigSH™ (X,,; A)* (165)
nle
which is indeed an equivalence by Theorem 2.3.4. O

At this stage, Theorem 4.4.2 is proven, except for the assertion that the functors in equation (148)
take an object (S, X) to RigSH(TA) (X; A). We do know this when X weakly compactifiable over S. In
order to establish this in general, we will need a few more results about the functors in equation (150).
We first introduce a notation which is useful in discussing these results.

Notation 4.4.14. The functors in equation (150) depend on S. To highlight this dependency, we use
‘Is’ in subscript and superscript instead of ‘. More explicitly, we denote by RigSH(TA)(—;A)gS and
RigSH(T/\)(—;A)!S these functors. Also, given a morphism f : Y — X in RigSpc't/S, we sometimes
denote by fi; and f 's the images of f by these functors.

Lemma 4.4.15. Let S be a rigid analytic space and f : Y — X a morphism in RigSpc't/S. Let
g : 8" — S be a morphism of rigid analytic spaces, and consider the Cartesian square

”

v 5 L,y

I, b

X 54X,

where f' is the base change of f by g. Consider the commutative square

RigSH™ (X”; A)'s —£ RigSHY (X; A)'s

Jfrls/ J/f!s

RigSH" ('; A)'s —“— RigSH{" (Y: A)'s,

where g is obtained by applying the second functor in equation (148) to the arrow (g,idx-) : (8’, X") —
(S, X) and similarly for g.’. This square is left adjointable if f or g is an open immersion.
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Proof. We may consider the commutative square in the statement as a morphism (f's’, f'S) in
Fun(A', CAT.,) between the functors g’ and g/, and our goal is to show that this morphism belongs to
the sub-co-category Fun™*¢(A!, CAT,,) introduced in [Lurl7, Definition 4.7.4.16]. By [Lurl7, Corol-
lary 4.7.4.18], it would be enough to show that the morphism ( £'s, £'s) is the limit of an inverse system
of morphisms in Fun"*A4(A!, CAT,,). By Proposition 4.4.10, the morphism ( f's’, f*s) is the limit of
morphisms in Fun(A', CAT.,) given by the following commutative squares

RigSH™ (8 x5 U; A)'s’ — RigSHM (U; A)'s

J |

RigSH™ (8 x5 V3 A)'s — RigSHY (V; A)'s,

where U ¢ X and V c Y xx U are open subspaces which are weakly compactifiable over S. Moreover,
the transition maps in this inverse system are given by commutative squares of the same type. Therefore,
it is enough the show that these squares are left adjointable, and thus we may assume that X and Y are
weakly compactifiable over S. In this case, we may use the explicit construction in Definition 4.3.4 and
Theorem 4.1.4(2) to conclude. O

Lemma 4.4.16. Let S be a rigid analytic space and j : ' — S an open immersion. Let Y € RigSpc'/S
such that the structure morphism' Y — S factors through S’. Then, there exists an equivalence of co-
categories

RigSH" (Y; A)'s ~ RigSHM (Y; A)'s’ (166)

such that the following condition is satisfied. For every morphism f : Y — X in RigSpc't/S, the functor
f's is equivalent, modulo the equivalence (166), to the composition of

RigSH? (x; A)s L5 RigsHY (x7; A)'s L RigSH (v; A)'s,

where X' = 8" Xs X, and j' : X’ = X and f' : Y — X' are the obvious morphisms.

Proof. The image of the arrow (j,id) : (S,Y) — (8’,Y) by the first functor in equation (148) is a
functor

RigSH™" (v; A)'s — RigSHY (¥; A)' (167)

such that, for every f : Y — X as in the statement, the square

RigSHY (X; A)'s —° 5 RigSH\" (v: A)'s

Ji J( 167)

RigSHYY (x; A)!s” L, RigSH\ (v: A)!s

is commutative by Lemma 4.4.15. Thus, to finish the proof, it is enough to show that the functor (167)
is an equivalence of co-categories. By Proposition 4.4.10, the question is local on Y. (Indeed, we may
as well prove that the right adjoint of the functor (167) is an equivalence of co-categories.) Thus, we
may assume that Y is weakly compactifiable over S. In this case, we may use the explicit construction
in Definition 4.3.4 to conclude. O
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Lemma 4.4.17. Let S be a rigid analytic space, and let j : U — X an open immersion in RigSpc''/S.
Then the functor

j's : RigSHWY (X; A)'s — RigSHY (U; A)'s

belongs to Pr™ and hence admits a right adjoint, which we denote by Jos-

Proof. Indeed, by Proposition 4.4.10, j 's is a limit in CAT4, of functors of the form
RigSHY (V;A)'s — RigSH (U NV;A)'s

for open subspaces V C X which are compactifiable over S. By [Lur(09, Proposition 5.5.3.13], it is thus
enough to prove that j's is in Pr when j is an open immersion between weakly compactifiable rigid
analytic S-spaces. In this case, we know that j'S is equivalent to j*, and the result follows. O

Lemma 4.4.18. Let S be a rigid analytic space, and consider a Cartesian square in RigSpc'™/S

\4

—

Y
g Jf
X

<

u
—_— s

c

with u an open immersion (resp., a closed immersion). Then, the commutative square

RigSHY (X; A)'s — RigSH™ (U; A)'s
Jf 's Jg’s
RigSHY (Y; A)'s — RigSHM (V; A)'s,

is right adjointable (resp., left adjointable).

Proof. We only consider the case of open immersions; the case of closed immersions is similar. Using
Proposition 4.4.10, [Lurl7, Corollary 4.7.4.18] and arguing as in the proof of Lemma 4.4.15, we reduce
to showing the lemma when X and Y are weakly compactifiable over S. In this case, the commutative
square of the statement coincides with the one deduced by adjunction from

RigSH\" (V; A) —* RigSHY (; A)
F
. (AN (7. “ . Ny
RigSH\" (U: A) —*— RigSHY (X: A).

The right adjointability of this square is clear: It follows from the construction of the exceptional direct
image functors given in Definition 4.3.4 and Proposition 2.2.1(3). O

Construction 4.4.19. Let S be a rigid analytic space, and leti : Z — X be a locally closed immersion
in RigSpc'™/S. We define a functor

ing : RigSHY" (Z; A),y — RigSH{ (X; A)yg

as follows. Choose an open subspace U C X containing Z as a closed subspace, and let s : Z — U and
J : U — X be the obvious immersions. Define i-¢ to be the composite functor jog o si.
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Lemma 4.4.20. Keep the notations of Construction 4.4.19. The functor iag is independent of the choice
of the open neighbourhood U.

Proof. Let U’ c U be an open neighbourhood of Z contained in U. Let s’ : Z - U’ andu : U" - U
be the obvious immersions. We need to show that u» o S!,s =~ 51,. We have a Cartesian square

[
|-
u

U ——

S

T——N

. . . ! ! . .
which induces an equivalence s”$ =~ §'S o uy, by Lemma 4.4.18. From this equivalence, we deduce
a natural transformation ;g — usg o sy . This natural transformation is an equivalence. Indeed, it is

enough to check this after applying u's and v's, with v : U ~\. Z — U the obvious inclusion, and this is
easily seen to be true using Lemma 4.4.18 again. )

Lemma 4.4.21. Let S be a rigid analytic space andi : Z — X alocally closed immersion in RigSpc'/S.
Let g : 8" — S be a morphism of rigid analytic spaces, and consider the Cartesian square

”

75 7
li/ \Ll
x5 x,

where i’ is the base change of i by g. Then, there is a commutative square of co-categories

RigSH\" (Z"; A)'s —5 RigSH\" (Z; A)'s
Jifws/ l"‘-’s
RigSH!" (X":A)'s' —— RigSH\" (X; A)'s.

(In the above square, g. is obtained by applying the second functor in equation (148) to the arrow
(g,idx’) : (8", X’) — (S, X) and similarly for g'.)

Proof. When i is an open immersion, this follows from Lemma 4.4.15. Thus, we may assume that i is a
closed immersion, and we need to prove the analogous statement for the functors i1, and ¢ ,’S Arguing
as in the proof of Lemma 4.4.15, we reduce to the case where X is weakly compactifiable. In this case,
the functors i, and i !’S/ coincide with i, and i, and the result follows. m]

Theorem 4.4.22. Let S be a rigid analytic space, and let T € RigSpc'™/S. There is a commutative
triangle

(RigSpc!™/T)P ——— (RigSpc!ft/§)oP

RigSHYY (- A)'T RigSHYY (-3 A)'s
PrR,

where the horizontal arrow is the forgetful functor. For X € RigSpc't/T, the induced equivalence of
co-categories

RigSH™Y (x; A)'7 5 RigSHY (X; A)'s (168)
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is obtained as follows. Consider the commutative diagram with a Cartesian square

|

ox Prx

X T xs X
\T

Then, the equivalence (168) is the composition of

8
—_—

(P X)*

RigSH"Y (X; A)'T il — 1, RigSHYY (T x5 X; A)'T —5 RigSH™ (X; A)'s. (169)

(Here we denote by (pry). the image by the functor RigSH(TM(—;A),i of the arrow (g,idrxsx) :
(8,X) = (T, T xs X).)

Proof. By Proposition 4.4.10 and Lemma 4.4.18, the composite functors (169) are part of a morphism
of PrR-valued sheaves on RigSpc'™/T

RigSH (=; A)'" — RigSH" (= A)'S g, g0 7-

Thus, it is enough to prove that the composite functor (169) is an equivalence under the following
assumptions:

o X is weakly compactifiable over S;
o X — T factors by an open subspace T’ C T which is weakly compactifiable over S.

The morphism dx : X — T Xg X is the composition of the open immersion j : T* Xg X — T Xg X and
the morphism 65 : X — T’ Xs X. We deduce that the composition of equation (169) is equivalent to
the composition of

XT

X RigSHY (77 x5 X3 A)'T

lj‘?T

RigSHY (T x5 X; A)'T —5

RigSH\Y (X; A)'7

P, RigSH (X; A)'s.

By Lemma 4.4.16, the functor j'7 is equivalent to the composition of

RigSH (T x5 X: A7 L5 RigSHY (T7 x5 X; A)'" ~ RigSH (T” x5 X; A)'T .

It follows that the functor j,. is equivalent to the composition of
RigSH\"Y (T’ x5 X; A)'T ~ RigSHY (T’ x5 X; A)'7" L5 RigSHY (T x5 X; A)'T.

Thus, modulo the equivalence RigSH(TA) (X;A)'T ~ RigSH(TA) (X;A)'’, the composition of equation
(169) is equivalent to the composition of

(S ()
RigSHY (X: A)'r ~2 RigSHN (77 x5 X: )7 720, RigSH (X: A)'S
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where pri, = pry o j. Therefore, it is enough to prove the theorem with 7 replaced by 7”. Said differently,
we may assume that X and 7" are weakly compactifiable over S. In this case, the diagram (169) can be
identified with

X )« B
RigSHY (X; A)* 22, RigSH? (T x5 X: A)* 2%, RigSHY (X; A)*

whose composition is clearly an equivalence. m

Corollary 4.4.23. For every rigid analytic space S and every X € RigSpc't/S, there is an equivalence
of co-categories

RigSH (X; A)* = RigSH™ (X; A)'s. (170)
Moreover, these equivalences satisfy the following properties.

(1) Given a Cartesian square of rigid analytic spaces

’

X 5 . x
lf' Jf
. g

LN

with f locally of finite type, there is a commutative square of co-categories

RigSH™ (X”; A)* —%— RigSH (X; A)*

RigSH™ (X”; A)'s —% RigSHY (X; A)'s.

(2) Given a rigid analytic space S and an open immersion j : X' — X in RigSpc''/S, we have a
commutative square

RigSH'" (X; A) —_ RigSH'" (X"; A)*

RigSH (X; A)'s — RigSHY (X"; A)'s.

Proof. The equivalence (170) is the equivalence (168) when X = T. Property (1) follows easily from
the construction of the equivalence (170) and Lemma 4.4.2 1. Property (2) follows from Theorem 4.4.22
combined with Corollary 4.3.15. O

Theorem 4.4.22 shows that the exceptional functors are independent of the base, i.e., the functors
figand f 's are independent of S up to equivalence. Note also that, by Proposition 4.4.10 and Corollary
4.3.18, these functors extend the ones of Definition 4.3.4. This justifies the following definition.

Definition 4.4.24. Let f : Y — X be a morphism of rigid analytic spaces which is locally of finite type.
The functors in adjunction

£ : RigSHYY (¥; A) 2 RigSHY (X; A) : f!
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are defined to be the images of the arrow (idy, f) : (X,Y) — (X, X) by the functors in equation (148)
modulo the equivalence RigSH(TA) (Y5A) = RigSH(TA) (Y; A)'x given by Corollary 4.4.23. The functors
fiand f* are called the exceptional direct and inverse image functors.

Remark 4.4.25. Given two morphisms f : ¥ — X and g : Z — Y which are locally of finite type, we
have equivalences fj o g; ~ (fog) and g' o f' =~ (f o g)". (This follows from the construction and the
equivalences fi, o gi, =~ (f og), and g'X o f'X ~ (f o g)'x.) Therefore, one expects to have functors,
from the wide subcategory of RigSpc spanned by locally of finite type morphisms, to Pr™ and (PrR)°p,
sending a morphism f to the functors f; and f'. Our method does not give readily such a functor, but
techniques from [GR 17, Part III] might do. (See Theorem 4.4.31 and Remark 4.4.32 below.)

Proposition 4.4.26. Consider a Cartesian square of rigid analytic spaces

y -5 .y

L

x £ x

with f locally of finite type. Then, there is a commutative square of co-categories

RigSH™ (¥; A) —— RigSHM (Y/; A)

T

RigSH"Y (X; A) —— RigSH™ (X; A).
Proof. Applying the first functor in equation (148) to the commutative square

(X,Y) — (XY

(X’X) — (X,,X,),

we get a commutative square of co-categories

RigSHY (v; A)'x —5— RigSHY (Y73 A)'x'

Jﬁx lf})’(,

RigSH\Y (X; A)'*x —— RigSHY (X7; A)'x.
The result follows then from Corollary 4.4.23. O
Proposition 4.4.27. The composition of the first functor in equation (148) with the obvious inclusion

. . ft
RigSpcP™P — RigSpc!
-/'RigSpc"p RigSpc?

is equivalent to the functor (152). In particular, if f : Y — X is a proper morphism of rigid analytic
spaces, there is an equivalence f, = f..

Proof. This is a direct consequence of the construction. O
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Corollary 4.4.28. Let f : Y — X be a morphism of rigid analytic spaces. Assume that f admits a
factorization f = p o j where j is an open immersion and p is a proper morphism. Then, there is an
equivalence fi ~ p. o jy.

Proof. This follows from Corollary 4.4.23(2), Remark 4.4.25 and Proposition 4.4.27. m}

Theorem 4.4.29 (Ambidexterity). Let f : Y — X be a smooth morphism between rigid analytic spaces.
There are equivalences f, = fy o Th™'(Qy) and f' =~ Th(Qy) o f*.

Proof. We first construct a natural transformation ¢ : fy — fi o Th(Q ). Consider the commutative
diagram with a Cartesian square

By Proposition 4.4.26, we have an equivalence p,; o p5 = f* o fi. Using the adjunctions ( f3, f*) and
(P2, 4> P3), we deduce a natural transformation fy o p1,; — fi o p, y. Applying the latter to A ¢y and
using the equivalences pj, 10 Ay | ~idand py yo Ay = Th(Qy), we get ay.

We next show that @ ¢ is an equivalence. It is easy to see that a ¢ is compatible with composition, i.e.,
that the analogue of [Ayo(O7a, Proposition 1.7.3] is satisfied. Moreover, if j is an open immersion, «; is
the equivalence jy ~ ji. Thus, to show that ay is invertible, we may argue locally on Y for the analytic
topology. Thus, we may assume that Y is weakly compactifiable over X. Choose a weak compactification
i:Y — W,andlet g : W — X be the structural morphism. To prove that as is invertible, it is enough
to show that the natural transformation fy o p1,1 — fi o p; y is invertible. Unwinding the definitions,
we see that it is enough to prove that the natural transformation fy o g, — f,o qy associated to the
Cartesian square

YXXW4)W

[, |

—>X

is an equivalence. This is indeed true by Theorem 4.1.4(2). O

There is another way to encapsulate much of the six-functor formalism using (co, 2)-categories of
correspondences (also known as spans). This gives an alternative approach to the constructions of this
subsection which is more elegant and more powerful. The technology needed to carry out this approach
is developed in [GR 17, Part III] but relies, unfortunately, on yet unproven hypotheses in the theory of
(00, 2)-categories; see [GR17, Chapter 10, §0.4]. It is for this reason that we decided to develop a more
self-contained approach. However, for the reader who is willing to accept the unproven hypotheses in
loc. cit., we briefly explain how this is supposed to work. For a similar discussion in the context of
equivariant motives, see [Hoy17, §6.2].
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Remark 4.4.30. Given an co-category € with finite limits, there is an associated (o, 2)-category Corr(C)
having the same objects as € and where 1-morphisms between X and Y are given by spans

Zz
7 X
X Y,

i.e., maps (f,g) : Z — X X Y. Given a second span (f’,g") : Z' — X XY, a2-morphism (f’,g’) =
(f,g) isamorphism i : Z' — Z such that g’ = gh and f’ = fh. If P|, P, and P3 are properties of
morphisms in €, we denote by Corr (€)% p,.p, the subcategory obtained by imposing Py, P> and P3 on the
morphisms f, g and & above. For details, on the (o0, 2)-category Corr(C), we refer the reader to [GR17,

Chapter 7, §1.2]. Below, we will be interested in the (oo, 2)-category COI’I’(ngSpC)prOp “, where 2-
morphisms are given by proper maps, and right legs of spans are requested to be weakly compactiﬁable
while no condition is imposed on left legs.

Theorem 4.4.31. There is a 2-functor

RigSH" (=; A) : (Corr(RigSpe)P™") 2P — pr- (171)

all, we

id id
sending a span of the form X <i Y S Yo f* and a span of the form'Y &y L X to fi. (Above, Pr-
is considered as an (co,2)-category in the natural way, i.e., where 2-morphisms are given by natural
transformations. )

Proof. We denote by ‘prop’ (resp., ‘iso’, ‘open’, ‘closed’, ‘imm’) the class of proper morphisms (resp.,
isomorphisms, open immersions, closed immersions, locally closed immersions) in RigSpc. By [GR17,
Chapter 7, Theorem 3.2.2] and Theorem 4.1.4(1), there exists a unique 2-functor

RigSH" (=; A) : (Corr(RigSpe)fi ™ )* — CAT. (172)
extending the functor RigSH(TA) (—=; A)* : RigSpc® — Prl. Also, by the same theorem of loc. cit., there
exists a unique 2-functor

RigSHY (=; A) : (Corr(RigSpc)Sﬁ Open)z'op — CAT,, (173)
extending the same functor. In particular, these two extensions coincide on (RigSpc%°#*)°P. By [GR17,

Chapter 7, Theorem 5.2.4] and Proposition 2.2.3, we may glue uniquely the 2-functor (173) with the
restriction of the 2-functor (172) to (Corr(RigSpc)is° )2°P and get a 2-functor

all, closed

RigSH'" (=: A) : (Corr(RigSpe)s°. )2 — CAT. (174)

all, imm

By a second application of [GR17, Chapter 7, Theorem 5.2.4] and using Proposition 4.3.3, we can glue
uniquely the 2-functors (172) and (174) to get the 2-functor (171) in the statement. O

Remark 4.4.32. We denote by ‘Ift’ the class of morphisms which are locally of finite type. It is
conceivable that the 2-functor (171) can be extended to a 2-functor

RigSH{"” (—; A) : (Corr(RigSpe)’r™"") 2P — prt (175)

sending a span of the form X <L Y 4 Y to f* and a span of the form Y & Y i) X to the functor fi of
Definition 4.4.24. We do not pursue this here.
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4.5. Projection formula

In this subsection, we explain how to incorporate the projection formula for the exceptional direct image
functors into the functor RigSHf,A) (=3 A); of Theorem 4.4.2.

Theorem 4.5.1. The functor RigSH(TA) (=3 Ny from Theorem 4.4.2 admits a structure of a module over
the composite functor

RigSH (- A)®
_—

/ RigSpc™ — RigSpc® CAlg(Prb), (176)
RigSpc®P

considered as a commutative algebra in the oco-category of functors from fRigSpd,p RigSpc!™ r0 Pr". (The
first functor in equation (176) is the one given by (S, X) v S.) Said differently, there is a functor

RigSH\Y (—; A)® : / RigSpc™ — Mod(Pr") (177)
’ RigSpc®P

which is a lifting of the functor RigSH(TA) (=3 A)[ and which is part of a commutative square

RigSHY (= A)®

fRigSpcop RigSpc'™ Mod(Pr%)
J RigSH(" (- A)® J
RigSpc®® oSty (720 CAlg(Prl).

Proof. We only sketch the argument, leaving some details to the reader. The proof consists in revisiting
the construction of the functor RigSH(TA) (= A); of Theorem 4.4.2, exhibiting step by step a natural
module structure over a suitable variant of the élgebra (176). We start by remarking that the functor
(151) lifts to a functor

RigSH" (—; A)®© : / (RigSpcP™P)*P — CAlg(Pr")
RigSpc®?

admitting a natural transformation from the composite functor

RigSH" (—; A)®
—_—

/R - (RigSpcP™P)°P — RigSpc®? CAlg(Pr").
igSpc

(The first functor in the composition above is given by (S, X) +— S.) Retaining merely the induced
module structure on the functor (151), we obtain a commutative square

RigSHY (= A)®-*

fRigSpC(,p (RigSpcProryop Mod (Pr")

l RigSH\Y (= A)® J

RigSpc? CAlg(Prb).

With K as in Construction 3.4.4, we set K; = (1) Xfin,, ¢, K. We may view the upper horizontal arrow
in the previous square as a functor

RigSH™ (—; A)®* : ( / (RigspcPfOP)"P) x K; — Pr-. (178)
R

igSpc®P
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Informally, this functor takes a pair of objects ((S,X),r : (1) — (m)) to the tensor product in
Prl> ® of copies of RigSHSA)(S;A), one for each i € {1,...,m} different from (1), and a copy of
RigSH(TA) (X;A),only when r(1) € {1,...,m}. Moreover, an arrow of the form ((ids, idx), s : (m) —
(n)) is sent to a functor induced by the tensor product on RigSHﬁA) (S; A), and the tensor product of an
object of RigSH(TA) (S; A) with an object of RigSH(TA) (X;A), i.e., the functor

RigSH\" (S; A) ® RigSH™ (X; A) — RigSH\"Y (X; A),

given by (M,N) — f*(M) ® N, where f : X — § is the structural morphism. Using this description,
it follows from Theorem 4.1.4(1) and Proposition 4.1.7 that the condition (%) in Construction 4.4.3 is
satisfied for the functor (178). (What plays the role of the simplicial set ‘S’ in that construction is the
category RigSpc® x Kj.) Applying Construction 4.4.3, we obtain a functor

RigSH" (—; A)® : ( / (RigSpc”™) | x K; — Prt. (179)
RigSpcP

This functor is easily seen to correspond to a Mod(Pr")-valued functor RigSH(TA) (=; A)Z which is a
lift of the functor (152) and which is part of a commutative square

RigSHYY (- A)®
L (RigSpcpropy MM (T g prly

J RigSHYY (- A)® J

RigSpc® CAlg(Prb).

/l‘iigSpc

Given (S, (X, W)) € WComp, the sub-co-category

/l‘iigSpc(’p
RigSH™ (X, W); A); < RigSHY" (W; A);!

(see Notations 4.3.10 and 4.4.6) is stable by tensoring with any object of RigSH.(,A)(W; A)} and, in
particular, by the inverse image of any object of RigSH(TA) (S; A)*. (This is an immediate consequence
of Proposition 2.2.1(2).) Applying Lemma 4.3.13 to the restriction of the functor (179) to the category

fRigSpCOp WComp, we obtain a functor

RigSHM (—; A)® : / WComp — Mod(Pr") (180)
’ RigSpc®P

which is a lift of the functor (157) and which is part of a commutative square as above. The remainder

of the construction follows closely the construction of the functor RigSH(TA) (=3 A); of Theorem 4.4.2.
Namely, we take a left Kan extension of the functor (180) along the functor (158) and then a second left
Kan extension along the fully faithful embedding (161). That the resulting functor

RigSHY (—; A)® : / RigSpc'™ — Mod(Pr*) (181)
) RigSpc®P

is a lift of the functor (159) follows from [Lur09, Proposition 4.3.3.10] and [Lurl7,
Corollary 3.4.4.6(2)]. O
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Proposition 4.5.2. Let S be a rigid analytic space and X € RigSpc'™t/S. There exists an equivalence of
RigSH™ (S; A)®-modules

RigSH!" ((S, X); A)® ~ RigSHY" (X; A)® (182)

which is a lift of the equivalence of co-categories provided by Corollary 4.4.23.

Proof. We want to show that the inverse of the equivalence (170) can be naturally lifted to a morphism
of RigSH(TA) (8; A)®-modules. This equivalence is given by the composition of

RigSH (5, X): A)F 72, RigSH (X, X xs X); A) 2, RigSHY (X, X): A);,

where:

o pr, : X Xs X — X is the projection to the second factor and 6x : X — X Xg X is the diagonal
embedding;
o (8x)’ is the left adjoint of the functor (dx ), as in Construction 4.4.19.

The existence of (Jx)’ follows from Proposition 4.4.27 which insures that the functor i, for i a closed
immersion of rigid analytic X-spaces, admits a left adjoint. The functor (pr,)* admits a natural lift to a

morphism of RigSH(TA) (S; A)®-modules. So, we are left to prove the same for (§x)’. More generally, it
is enough to prove the following assertions (with 7" a rigid analytic space).

(1) If j : V — Y is an open immersion in RigSpclfl /T, the functor
Y (A CA)E : (N DAY
J RigSH " ((T,Y); A); — RigSH; " (T, V); A),

lifts to a morphism of RigSH(TA) (Y; A)‘X’-modqles.
(2) Ifi : Z — Y is a closed immersion in RigSpc'™ /7T, the functor

i’ : RigSHYY (T, Y); A); — RigSHYY (T, 2); A);

lifts to a morphism of RigSH(TA) (Y; A)®-modules.

For the first assertion, starting with the morphism of RigSH(TA) (Y; A)®-modules j,, we need to show
that the morphism

7' (A)® B — j'(A®B) (183)

is an equivalence for A € RigSH(TA> ((T,Y); A); and B € RigSH(TA) (Y; A). This can be checked locally
on Y, and thus we may assume that Y is weakly compactifiable over 7. In this case, the morphism (183)
can be identified with the equivalence j*(A) ® j*(B) =~ j*(A ® B). Similarly, for the second assertion,
starting with the morphism of RigSH(TA) (Y; A)®-modules i), we need to show that the morphism

i’(A®B) > i’(A)® B (184)

is an equivalence for A € RigSH(TA) ((T,Y);A) and B € RigSH(TA) (Y; A). This can checked locally on
Y, and thus we may assume that Y is weakly compactifiable. In this case, the morphism (184) can be
identified with the equivalence i*(A ® B) =~ i*(A) ® i*(B). O

Corollary 4.5.3 (Projection formula). Let f : Y — X be a morphism of rigid analytic spaces which is
locally of finite type. Then, the functor

£ : RigSH™ (Y; A) — RigSHYY (X; A),
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as in Definition 4.4.24, admits a lift to a morphism of RigSH(TA) (X; A)®-modules. In particular, there
is an equivalence

M® fiN = fi(f*"M ® N)

Jor every M € RigSH(TA) (X;A)and N € RigSHf,A)(Y; A).

Proof. This is an immediate consequence of Theorem 4.5.1 and Proposition 4.5.2. O

Corollary 4.54. Let f : Y — X be a morphism of rigid analytic spaces which is locally of finite type.
Then there are equivalences

f'Hom(M, M’y ~ Hom(f*M, f'M’) and Hom(fiN,M) ~ f,Hom(N, f'M)

for M, M’ € RigSH" (X; A) and N € RigSHV (Y; A).

Proof. These are obtained by adjunction from the equivalences
(M@-)ofi=fioe(f'M®-) and (-®fIN)=fio(-@N)o f*

which are provided by Corollary 4.5.3. O

4.6. Compatibility with the analytification functor

In this last subsection, we prove the compatibility of the exceptional functors with the analytification
functor (20). We first start with the algebraic analogue of Theorem 4.4.2. (Below, for a scheme S, we
denote by Sch'™/S the category of locally of finite type S-schemes.)

Theorem 4.6.1. There are functors

SHY (= A); / Sch' — Prt-

Seh™® \op (185)
SHYW (—;A)! - (/ Sch“‘) — PR

SchP

which are exchanged by the equivalence (Pr)°P =~ PrR and which admit the following informal descrip-
tion.

o These functors send an object (S, X), with S a scheme and X an object of Sch'™ /S, to the co-category
SHM (X; A).

o These functors send an arrow (g, f) : (S,Y) — (T, X), consisting of morphisms g : T — S and
f:TxsY — X, to the functors fi o g"* and g’ o f*, respectively, with g’ : T Xs Y — Y the base
change of g.

Moreover, the functors in equation (185) satisfy the following properties.

(1) The ordinary functors

SH.(,A)(—;A)* : Sch®? — Prt
(186)
SH(TA)(—;A)* : Sch® — PR

are obtained from the functors in equation (185) by composition with the functor Sch®® —
fschop Sch'', given by S +— (S, S).
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(2) For a scheme S, consider the functors

SHM (=; A), : Schift/s — Pit
(187)
SHYY (= A)' : Sch'f/s — PR

obtained from the functors in equation (185) by restriction to Sch' /S. For a morphism f 1Y — X
in Sch'™/S, denote by fi and f' the images of f by these functors, respectively. If f is proper, there is
an equivalence f =~ f., and if f is smooth, there is an equivalence f* ~ Th(Qy) o f~.

(3) The functor SH(TA) (=3 A can be lifted to a functor

SHY) (<0072 [ sei™ > Moa(pr)
’ SchP

which is part of a commutative square

SHY (= A)P
Jsagor Sch'™t —————— Mod(Pr")

l SHfr/\) (=3 A)® l
_—

Sch°P CAlg(Prb).

Proof. This is the algebraic analogue of the combination of Theorems 4.4.2 and 4.5.1. The proof in the
algebraic setting is totally similar to the proof in the rigid analytic setting. However, we spend some
lines discussing the construction of the functors in equation (185) in order to introduce some notation
which will be useful for the proof of Theorem 4.6.3 below.

Given a scheme S, we denote by SchP™P/S the category of proper S-schemes. We also denote by
Sch?/S the category of compactifiable S-schemes, i.e., those S-schemes admitting an open immersion
into a proper S-scheme. We have an inclusion Sch®® /S c Sch*/§ which is an equality when S is quasi-
compact and quasi-separated by Nagata’s compactification theorem (see [Con07, Theorem 4.1]). We
denote by Comp/S the category whose objects are pairs (X, X), where X is an S-scheme and X is a
compactification of X over S. We have a functor dg : Comp/S — Sch®/S, given by (X, X) > X.

The construction of the functors in equation (185) starts with the functor

SHM (=; A)** : / p(Schp“’p)Op — Prt (188)
Sch®

obtained from SH(TA) (=; A)* by composition with the functor fsm"P (SchP™P)°P — SchP, given by
(S, X) — X. The condition (x) in Construction 4.4.3 is satisfied for the functor (188) by the proper base
change theorem (see Proposition 4.1.1(1)). Using this construction, we obtain a functor

SHY (= A)? : / SchP™©P — pr- (189)
Sch°P

sending an arrow (g, f) : (S,Y) — (T, X), consisting of morphisms g : 7 — Sand f : T Xs Y — X,
to the composite functor f, o g"™ : SH&A) (Y;A) —> SH(TA) (X;A),with g’ : T Xg Y — Y the base change
of g. Let S be a scheme. For (X, X) in Comp/S, we denote by SH;A) ((X,X); A); the essential image of
the fully faithful embedding

vy SH.(,A) (X;A) — SH(TA) (X;N),
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where v : X — X is the given open immersion. By Proposition 4.1.1(2), the analogue of Proposition
4.4.7 holds true for the functor (189). Thus, we may apply Lemma 4.3.13 to obtain a functor

SH (=, —): A); - /

Sch

Comp — Prt. (190)
op

By left Kan extension along the functor d : /Schop Comp — fSchop Sch?, we deduce from the functor
(190) the functor

SHY (=; A); ;/ Sch® — Pr. (191)
SchP

The analogue of Lemma 4.4.8 is also valid here. Finally, the first functor in equation (185) is obtained
by left Kan extension along fschop Sch®? — ./Sch”p Sch'™ from the functor (191). m]

Remark 4.6.2. Theorem 4.6.1 holds true with the same proof for any stable homotopical functor in
the sense of [Ayo07a, Définition 1.4.1]. More precisely, given a functor H* : Sch® — Prt, f s f*
satisfying the oco-categorical versions of the properties (1)—(6) listed in [Ayo07a, §1.4.1], there are
functors

H(-)! : / Sch' — pr-
’ ScheP

A\
H(-)! : ( / sm“‘) - Pt
SchP

satisfying the properties (1) and (2) of Theorem 4.6.1. Moreover, if H admits a lift to a functor
H® : Sch® — CAlg(Pr") such that the projection formula holds, then property (3) of Theorem 4.6.1 is
also satisfied.

(192)

Theorem 4.6.3. Let A be an adic ring. Set S = Spf(A)"& and U = Spec(A) ~ Spec(A/I), where I C A
is an ideal of definition. There is a commutative cube of co-categories

N

Ift : Ift
Jisetit juryen Seh Jiwigspert 5y RigSPe
~ ~~
SHYY (= A)P RigSH:" (=)
Mod(Pr") Mod(Pr%)
(Sch't/77)op © (RigSpc/§)°p
\ \
SHM (—;A)® RigSH (—; A)®
T~
CAlg(Prh) CAlg(Prb).
In particular, there is a natural transformation
An* : SHYY (= A); — RigSH™ ()™ A); (193)

between functors from f( Sch'™ 7o Prl“ which extends the morphism of Pr*-valued presheaves

Sch'ft/U)op
An® underlying the morphism (21) in Proposition 2.2.13.
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Proof. For simplicity, we only construct the natural transformation (193). It will be clear from the
construction how to lift this natural transformation into a commutative square which is part of a
commutative cube as in the statement.

We use the notation introduced in the proof of Theorem 4.6.1. By construction, the functor

SHM (= A); / Sch't — prt
' (Sch't/u)op

is a left Kan extension along the functor

b / Comp — Sch'ft,
(Sch't/uyop (Sch't/U)op

given by (S, (X, X)) — (S, X), of the functor

SH(TA)((—, - A / Comp — Pr-
(Sch't/uyop

obtained from the functor (190) by restriction. (Here we are combining the two left Kan extensions
from the proof of Theorem 4.6.1.) By the universal property of left Kan extensions, it is thus enough to
construct a natural transformation

An® s SHY (=) A)7 = RigSH ()™ A) o

between functors from /(Sch'ﬂ JUyop Comp to Prl. Now, consider the functors

w: / Comp — SchP®P and w’: / Comp — Sch't
(Sch'™/uyop (Sch'™/U)op (Sch'™/uyop (Sch'™/Uyop

given by (S, (X, X)) — (S,X). The obvious natural transformation v : d’ — w’ induces a natural
transformation

vi" : RigSHY ((-)™; A); o b’ — RigSH" ()" A); o w’

which is objectwise a fully faithful embedding. Thus, we may obtain RigSH(TA) ((=)*; A)] o from

RigSH(TA)((—)a“;A)!* o w’ by applying Lemma 4.3.13 to the essential images of the fully faithful
embeddings

vi": RigSHY (X*"; A) — RigSHY (X*"; A)

for the objects (S, (X, X)). Since SH(TA) ((=,—); A); is constructed from SH(TA) (=; A)} o w in the same
way, we are left to construct a natural transformation

SH{" (= A); o w — RigSH{" ((-)™; A); o w'.

The functor w’ factors through /(sm“" Uy SchP™P_ Thus, by Proposition 4.4.27, it is enough to construct
a natural transformation

SH™ (= A)F — RigSHY ((—)™; A)?
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between functors from f(Schm U)o SchP™P to Pr'. Equivalently, we need to construct a functor

/ SchP™P — prl,
(Sch'ft/U)opx Al

which restricts to SH™ (—; A)* over {0} ¢ A! and to RigSH\"Y ((-)a; A)? over {1} c A'. For this, we
apply Construction 4.4.3 to the composite functor

/ (SchPP)%P — Al x (Sch™/U)P — Pr,
(Sch!t/U)opxA!

where the first functor is given by ((S,€),X) — (e, X) and the second one classifies the natural
transformation An”* : SH(TA) (=N — RigSH(TA) ((=); A) underlying the morphism (21) in Proposition
2.2.13. That condition (x) in Construction 4.4.3 is satisfied follows from Propositions 2.2.14 and 4.1.1(1)
and Theorem 4.1.4(1). ]
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